Deep Learning for Real-Time Chip Temperature and Power Predictions

卷积神经网络 杠杆(统计) 计算机科学 编码器 反向 深度学习 反问题 人工智能 航程(航空) 温度测量 算法 数学 工程类 物理 几何学 数学分析 航空航天工程 量子力学 操作系统
作者
Meghavin Bhatasana,Amy Marconnet
标识
DOI:10.1109/itherm55368.2023.10177600
摘要

Deep learning is a subset of machine learning that focuses on complex non-linear processing of data. These frameworks are central to emerging technologies like automated driving and medical imaging but could also be applied to thermal management challenges to reduce computational time and enable real-time predictions of temperature and power during operation of electronic devices. In this paper, we leverage convolutional neural network (CNN) frameworks to (1) predict the temperature map given the power distribution on the heated surface (i.e., the forward problem), and (2) predict the power distribution given a temperature map of the exposed surface in a silicon die (i.e., the inverse problem). The forward problem is solved using two CNN architectures. For a given power map, the first CNN predicts the range of temperatures on the heated surface (that is, the hottest and coolest temperatures), while the second CNN predicts the normalized spatial temperature distribution throughout this surface. This normalized distribution is then scaled using the temperatures estimated by the first CNN to predict the absolute temperature map. The predictions of minimum and maximum temperatures have an MAE of less than 0.5° C, with the combined framework to predict temperature distributions having an MAE of less than 1°C. The inverse problem is solved using a modified U-Net architecture that uses a popular pre-trained encoder MobileNetV2, and decoder blocks from the pix2pix framework. The MAE between the input temperature maps and those resulting from the predicted power maps is 1.4° C with an error in the normalized distribution of only 2%. With an inference time of 5 milliseconds (forward problem) and 14 milliseconds (inverse problem) on a commercial processor, this analysis shows potential for deployment on-chip for real-time temperature distribution predictions or for integration with inverse algorithms to predict power distributions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
读心理学太多导致的完成签到,获得积分10
2秒前
满天星完成签到,获得积分10
2秒前
3秒前
Lee发布了新的文献求助10
6秒前
李健应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
薰硝壤应助科研通管家采纳,获得10
8秒前
8秒前
Orange应助科研通管家采纳,获得10
8秒前
saeda应助科研通管家采纳,获得10
9秒前
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
竹筏过海完成签到,获得积分0
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
Tianling应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
NEXUS1604应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
大模型应助林林采纳,获得10
10秒前
13秒前
15秒前
那么发布了新的文献求助10
19秒前
19秒前
北风完成签到,获得积分10
19秒前
夕夜完成签到,获得积分10
24秒前
Bakkkyeom完成签到,获得积分10
26秒前
花岛宝贝发布了新的文献求助10
28秒前
31秒前
fengbeing发布了新的文献求助10
32秒前
大饼完成签到,获得积分10
32秒前
32秒前
Doinb完成签到,获得积分10
33秒前
33秒前
35秒前
安静的难破完成签到,获得积分10
35秒前
37秒前
陈星发布了新的文献求助10
37秒前
高分求助中
求助这个网站里的问题集 1000
Floxuridine; Third Edition 1000
Models of Teaching(The 10th Edition,第10版!)《教学模式》(第10版!) 800
La décision juridictionnelle 800
Rechtsphilosophie und Rechtstheorie 800
Nonlocal Integral Equation Continuum Models: Nonstandard Symmetric Interaction Neighborhoods and Finite Element Discretizations 600
Academic entitlement: Adapting the equity preference questionnaire for a university setting 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2873247
求助须知:如何正确求助?哪些是违规求助? 2482173
关于积分的说明 6723534
捐赠科研通 2167405
什么是DOI,文献DOI怎么找? 1151412
版权声明 585724
科研通“疑难数据库(出版商)”最低求助积分说明 565283