Deep Multi-Agent Reinforcement Learning for Highway On-Ramp Merging in Mixed Traffic

强化学习 可扩展性 计算机科学 监督人 利用 分布式计算 人工智能 计算机安全 数据库 政治学 法学
作者
Dong Chen,Mohammad R. Hajidavalloo,Zhaojian Li,Kaian Chen,Yongqiang Wang,Longsheng Jiang,Yue Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 11623-11638 被引量:160
标识
DOI:10.1109/tits.2023.3285442
摘要

On-ramp merging is a challenging task for autonomous vehicles (AVs), especially in mixed traffic where AVs coexist with human-driven vehicles (HDVs). In this paper, we formulate the mixed-traffic highway on-ramp merging problem as a multi-agent reinforcement learning (MARL) problem, where the AVs (on both merge lane and through lane) collaboratively learn a policy to adapt to HDVs to maximize the traffic throughput. We develop an efficient and scalable MARL framework that can be used in dynamic traffic where the communication topology could be time-varying. Parameter sharing and local rewards are exploited to foster inter-agent cooperation while achieving great scalability. An action masking scheme is employed to improve learning efficiency by filtering out invalid/unsafe actions at each step. In addition, a novel priority-based safety supervisor is developed to significantly reduce collision rate and greatly expedite the training process. A gym-like simulation environment is developed and open-sourced with three different levels of traffic densities. We exploit curriculum learning to efficiently learn harder tasks from trained models under simpler settings. Comprehensive experimental results show the proposed MARL framework consistently outperforms several state-of-the-art benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
宋如风发布了新的文献求助10
1秒前
2秒前
kkeeaa发布了新的文献求助10
2秒前
2秒前
3秒前
jonghuang完成签到,获得积分10
3秒前
搜集达人应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
lune应助科研通管家采纳,获得10
4秒前
lune应助科研通管家采纳,获得10
4秒前
深情安青应助完美梨愁采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
今后应助科研通管家采纳,获得10
5秒前
5秒前
今后应助科研通管家采纳,获得10
5秒前
DTOU应助科研通管家采纳,获得10
5秒前
DTOU应助科研通管家采纳,获得10
5秒前
Affiliation发布了新的文献求助10
5秒前
smottom应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
啊哈哈哈发布了新的文献求助10
5秒前
smottom应助科研通管家采纳,获得10
5秒前
搜集达人应助辛勤的凌香采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
kk关注了科研通微信公众号
5秒前
qing应助科研通管家采纳,获得10
5秒前
qing应助科研通管家采纳,获得10
5秒前
幸福的羿发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784558
求助须知:如何正确求助?哪些是违规求助? 5682922
关于积分的说明 15464566
捐赠科研通 4913664
什么是DOI,文献DOI怎么找? 2644848
邀请新用户注册赠送积分活动 1592770
关于科研通互助平台的介绍 1547187