太赫兹辐射
偶极子
材料科学
吸收(声学)
表面等离子体激元
光学
光电子学
电介质
等离子体子
表面等离子体子
物理
量子力学
作者
Si Ying Li,Zhao Tang,Di Zhu,Haifeng Zhang
摘要
A Janus metastructure (MS) assisted by a waveguide structure (WGS) resting on anapole modes and exhibiting direction-dependent behavior has been developed in the terahertz (THz) region. Ultra-broadband absorption is formed by the destructive interference through the anapole as well as Janus trait and is shaped by nested WGS. In this design, vanadium dioxide (VO2) is expected to attain functional transformation from plasmon-induced transparency (PIT) to absorption. The insulating nature of the VO2 results in the creation of the PIT, which is characterized by a wide and high transmission window ranging from 1.944 THz to 2.284 THz, corresponding to the relative bandwidth of 7.4% above 0.9. However, when the VO2 reaches the metallic state, a high absorptivity of 0.921 at 2.154 THz can be implemented in the -z-direction owing to the excitement of the toroidal dipole and electric dipole moments in the near-infrared region. And in the +z-direction, the broadband absorption above 0.9 in the 1.448-2.497 THz range takes shape in virtue of surface plasmon polariton modes, in which intensely localized oscillation of free electrons is confined to the metal-dielectric interface supported by the WGS. Noting that the MS is equipped with a favorable sensitivity to the incidence angle, we develop an ultra-broadband backward absorption in the TM mode from 0.7-10 THz nearly all above 0.9 when the incidence angle changes from 30°-70°. Moreover, owing to the highly symmetrical structure, the MS exhibits exotic polarization angular stability. All the awesome properties make this MS a good candidate for various applications such as in electromagnetic wave steering, spectral analysis, and sensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI