亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Toward Automated Detection of Silent Cerebral Infarcts in Children and Young Adults With Sickle Cell Anemia

医学 组内相关 磁共振成像 冲程(发动机) 核医学 放射科 心理测量学 机械工程 临床心理学 工程类
作者
Yasheng Chen,Wang Yan,Chia-Ling Phuah,Melanie E. Fields,Kristin P. Guilliams,Slim Fellah,Martin Reis,Michael M. Binkley,Hongyu An,Lee J,Robert C. McKinstry,Lori C. Jordan,Michael R. DeBaun,Andria L. Ford
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
卷期号:54 (8): 2096-2104
标识
DOI:10.1161/strokeaha.123.042683
摘要

Silent cerebral infarcts (SCI) in sickle cell anemia (SCA) are associated with future strokes and cognitive impairment, warranting early diagnosis and treatment. Detection of SCI, however, is limited by their small size, especially when neuroradiologists are unavailable. We hypothesized that deep learning may permit automated SCI detection in children and young adults with SCA as a tool to identify the presence and extent of SCI in clinical and research settings.We utilized UNet-a deep learning model-for fully automated SCI segmentation. We trained and optimized UNet using brain magnetic resonance imaging from the SIT trial (Silent Infarct Transfusion). Neuroradiologists provided the ground truth for SCI diagnosis, while a vascular neurologist manually delineated SCI on fluid-attenuated inversion recovery and provided the ground truth for SCI segmentation. UNet was optimized for the highest spatial overlap between automatic and manual delineation (dice similarity coefficient). The optimized UNet was externally validated using an independent single-center prospective cohort of SCA participants. Model performance was evaluated through sensitivity and accuracy (%correct cases) for SCI diagnosis, dice similarity coefficient, intraclass correlation coefficient (metric of volumetric agreement), and Spearman correlation.The SIT trial (n=926; 31% with SCI; median age, 8.9 years) and external validation (n=80; 50% with SCI; age, 11.5 years) cohorts had small median lesion volumes of 0.40 and 0.25 mL, respectively. Compared with the neuroradiology diagnosis, UNet predicted SCI presence with 100% sensitivity and 74% accuracy. In magnetic resonance imaging with SCI, UNet reached a moderate spatial agreement (dice similarity coefficient, 0.48) and high volumetric agreement (intraclass correlation coefficient, 0.76; ρ=0.72; P<0.001) between automatic and manual segmentations.UNet, trained using a large pediatric SCA magnetic resonance imaging data set, sensitively detected small SCI in children and young adults with SCA. While additional training is needed, UNet may be integrated into the clinical workflow as a screening tool, aiding in SCI diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kdjm688发布了新的文献求助10
3秒前
哭泣的丝完成签到 ,获得积分10
17秒前
spark810发布了新的文献求助10
21秒前
48秒前
沉淀完成签到 ,获得积分10
49秒前
53秒前
amy完成签到,获得积分10
53秒前
科研通AI2S应助小小康康采纳,获得10
54秒前
59秒前
1分钟前
vg完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
张张张完成签到 ,获得积分10
1分钟前
2分钟前
今晚睇paper完成签到,获得积分10
2分钟前
dental发布了新的文献求助10
2分钟前
serena0_0发布了新的文献求助10
2分钟前
一个薯片完成签到,获得积分10
2分钟前
jerry完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
2分钟前
小路完成签到,获得积分10
2分钟前
ccc发布了新的文献求助10
2分钟前
2分钟前
2分钟前
李健的粉丝团团长应助ccc采纳,获得10
2分钟前
spark810完成签到,获得积分0
3分钟前
spark810发布了新的文献求助10
3分钟前
佛fire完成签到,获得积分20
3分钟前
小二郎应助serena0_0采纳,获得10
3分钟前
劳健龙完成签到 ,获得积分10
3分钟前
zzyh307完成签到 ,获得积分0
3分钟前
CipherSage应助年轻的如冰采纳,获得10
3分钟前
3分钟前
佛fire发布了新的文献求助10
3分钟前
轻松觅柔发布了新的文献求助10
3分钟前
科研通AI2S应助年轻的如冰采纳,获得10
3分钟前
Buendia完成签到,获得积分10
3分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146703
求助须知:如何正确求助?哪些是违规求助? 2798009
关于积分的说明 7826443
捐赠科研通 2454508
什么是DOI,文献DOI怎么找? 1306317
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522