Toward Automated Detection of Silent Cerebral Infarcts in Children and Young Adults With Sickle Cell Anemia

医学 组内相关 磁共振成像 冲程(发动机) 核医学 放射科 心理测量学 机械工程 临床心理学 工程类
作者
Yasheng Chen,Wang Yan,Chia-Ling Phuah,Melanie E. Fields,Kristin P. Guilliams,Slim Fellah,Martin Reis,Michael M. Binkley,Hongyu An,Lee J,Robert C. McKinstry,Lori C. Jordan,Michael R. DeBaun,Andria L. Ford
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:54 (8): 2096-2104
标识
DOI:10.1161/strokeaha.123.042683
摘要

Silent cerebral infarcts (SCI) in sickle cell anemia (SCA) are associated with future strokes and cognitive impairment, warranting early diagnosis and treatment. Detection of SCI, however, is limited by their small size, especially when neuroradiologists are unavailable. We hypothesized that deep learning may permit automated SCI detection in children and young adults with SCA as a tool to identify the presence and extent of SCI in clinical and research settings.We utilized UNet-a deep learning model-for fully automated SCI segmentation. We trained and optimized UNet using brain magnetic resonance imaging from the SIT trial (Silent Infarct Transfusion). Neuroradiologists provided the ground truth for SCI diagnosis, while a vascular neurologist manually delineated SCI on fluid-attenuated inversion recovery and provided the ground truth for SCI segmentation. UNet was optimized for the highest spatial overlap between automatic and manual delineation (dice similarity coefficient). The optimized UNet was externally validated using an independent single-center prospective cohort of SCA participants. Model performance was evaluated through sensitivity and accuracy (%correct cases) for SCI diagnosis, dice similarity coefficient, intraclass correlation coefficient (metric of volumetric agreement), and Spearman correlation.The SIT trial (n=926; 31% with SCI; median age, 8.9 years) and external validation (n=80; 50% with SCI; age, 11.5 years) cohorts had small median lesion volumes of 0.40 and 0.25 mL, respectively. Compared with the neuroradiology diagnosis, UNet predicted SCI presence with 100% sensitivity and 74% accuracy. In magnetic resonance imaging with SCI, UNet reached a moderate spatial agreement (dice similarity coefficient, 0.48) and high volumetric agreement (intraclass correlation coefficient, 0.76; ρ=0.72; P<0.001) between automatic and manual segmentations.UNet, trained using a large pediatric SCA magnetic resonance imaging data set, sensitively detected small SCI in children and young adults with SCA. While additional training is needed, UNet may be integrated into the clinical workflow as a screening tool, aiding in SCI diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Iris完成签到,获得积分10
刚刚
刚刚
谷歌官方发布了新的文献求助10
1秒前
特安谭完成签到,获得积分10
1秒前
心斋完成签到,获得积分10
1秒前
wind完成签到 ,获得积分10
2秒前
Rz完成签到,获得积分10
2秒前
lcls完成签到,获得积分10
3秒前
刘娇娇完成签到,获得积分10
3秒前
sevenvictory完成签到,获得积分10
4秒前
彳亍完成签到,获得积分10
4秒前
cn完成签到 ,获得积分10
4秒前
科研通AI2S应助lazy采纳,获得10
5秒前
5秒前
Rz发布了新的文献求助10
5秒前
AGuang应助vivi采纳,获得20
5秒前
姚断天完成签到 ,获得积分10
6秒前
7秒前
7秒前
醉翁完成签到,获得积分10
8秒前
时尚初南发布了新的文献求助10
9秒前
9秒前
二娃发布了新的文献求助30
10秒前
qhq完成签到,获得积分10
11秒前
小樊同学发布了新的文献求助10
11秒前
谷歌官方完成签到,获得积分20
11秒前
夏侯远望完成签到,获得积分10
12秒前
开飞机的天天完成签到,获得积分10
12秒前
13秒前
火星天完成签到,获得积分10
14秒前
Leohp完成签到,获得积分10
14秒前
石敢当完成签到,获得积分10
14秒前
Lucas应助小樊同学采纳,获得10
14秒前
芳芳完成签到,获得积分10
14秒前
搞怪人雄完成签到,获得积分10
15秒前
15秒前
Pauline完成签到 ,获得积分10
17秒前
古炮发布了新的文献求助10
18秒前
洽洽瓜子shine完成签到,获得积分10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968593
求助须知:如何正确求助?哪些是违规求助? 3513416
关于积分的说明 11167791
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794507
邀请新用户注册赠送积分活动 875170
科研通“疑难数据库(出版商)”最低求助积分说明 804671