已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Toward Automated Detection of Silent Cerebral Infarcts in Children and Young Adults With Sickle Cell Anemia

医学 组内相关 磁共振成像 冲程(发动机) 核医学 放射科 心理测量学 机械工程 临床心理学 工程类
作者
Yasheng Chen,Wang Yan,Chia-Ling Phuah,Melanie E. Fields,Kristin P. Guilliams,Slim Fellah,Martin Reis,Michael M. Binkley,Hongyu An,Lee J,Robert C. McKinstry,Lori C. Jordan,Michael R. DeBaun,Andria L. Ford
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:54 (8): 2096-2104
标识
DOI:10.1161/strokeaha.123.042683
摘要

Silent cerebral infarcts (SCI) in sickle cell anemia (SCA) are associated with future strokes and cognitive impairment, warranting early diagnosis and treatment. Detection of SCI, however, is limited by their small size, especially when neuroradiologists are unavailable. We hypothesized that deep learning may permit automated SCI detection in children and young adults with SCA as a tool to identify the presence and extent of SCI in clinical and research settings.We utilized UNet-a deep learning model-for fully automated SCI segmentation. We trained and optimized UNet using brain magnetic resonance imaging from the SIT trial (Silent Infarct Transfusion). Neuroradiologists provided the ground truth for SCI diagnosis, while a vascular neurologist manually delineated SCI on fluid-attenuated inversion recovery and provided the ground truth for SCI segmentation. UNet was optimized for the highest spatial overlap between automatic and manual delineation (dice similarity coefficient). The optimized UNet was externally validated using an independent single-center prospective cohort of SCA participants. Model performance was evaluated through sensitivity and accuracy (%correct cases) for SCI diagnosis, dice similarity coefficient, intraclass correlation coefficient (metric of volumetric agreement), and Spearman correlation.The SIT trial (n=926; 31% with SCI; median age, 8.9 years) and external validation (n=80; 50% with SCI; age, 11.5 years) cohorts had small median lesion volumes of 0.40 and 0.25 mL, respectively. Compared with the neuroradiology diagnosis, UNet predicted SCI presence with 100% sensitivity and 74% accuracy. In magnetic resonance imaging with SCI, UNet reached a moderate spatial agreement (dice similarity coefficient, 0.48) and high volumetric agreement (intraclass correlation coefficient, 0.76; ρ=0.72; P<0.001) between automatic and manual segmentations.UNet, trained using a large pediatric SCA magnetic resonance imaging data set, sensitively detected small SCI in children and young adults with SCA. While additional training is needed, UNet may be integrated into the clinical workflow as a screening tool, aiding in SCI diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田鹤飞完成签到,获得积分10
刚刚
sci完成签到 ,获得积分10
2秒前
2秒前
自然的初丹完成签到,获得积分10
3秒前
大神完成签到,获得积分0
3秒前
科研通AI5应助缥缈的飞荷采纳,获得10
4秒前
SciGPT应助恰逢时年采纳,获得10
5秒前
Myrna发布了新的文献求助10
5秒前
5秒前
terryok完成签到,获得积分10
6秒前
6秒前
7秒前
陳某发布了新的文献求助10
8秒前
lyt完成签到,获得积分10
9秒前
xiaoxiao_121发布了新的文献求助10
10秒前
三岁完成签到 ,获得积分10
12秒前
monster0101完成签到 ,获得积分10
12秒前
黎日新完成签到,获得积分10
12秒前
12秒前
受伤翠容发布了新的文献求助50
12秒前
半圭为璋完成签到,获得积分10
12秒前
越野完成签到 ,获得积分10
13秒前
可爱沛蓝完成签到 ,获得积分10
13秒前
魏芸芸发布了新的文献求助10
14秒前
陳某完成签到,获得积分10
14秒前
wsb76完成签到 ,获得积分10
14秒前
SciGPT应助Derson采纳,获得10
14秒前
落寞飞烟完成签到,获得积分10
15秒前
今后应助chenrujian采纳,获得10
16秒前
泶1完成签到,获得积分10
16秒前
黄黄黄完成签到,获得积分10
17秒前
七慕凉应助U9A采纳,获得20
17秒前
天凉王破完成签到 ,获得积分10
17秒前
星河完成签到,获得积分10
18秒前
xiaoxiao_121完成签到,获得积分10
18秒前
王者归来完成签到,获得积分10
19秒前
forstudy完成签到 ,获得积分10
20秒前
SherWei完成签到,获得积分10
20秒前
nuliguan完成签到 ,获得积分10
20秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976560
求助须知:如何正确求助?哪些是违规求助? 3520659
关于积分的说明 11204287
捐赠科研通 3257271
什么是DOI,文献DOI怎么找? 1798653
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806570