Toward Automated Detection of Silent Cerebral Infarcts in Children and Young Adults With Sickle Cell Anemia

医学 组内相关 磁共振成像 冲程(发动机) 核医学 放射科 心理测量学 机械工程 临床心理学 工程类
作者
Yasheng Chen,Wang Yan,Chia-Ling Phuah,Melanie E. Fields,Kristin P. Guilliams,Slim Fellah,Martin Reis,Michael M. Binkley,Hongyu An,Lee J,Robert C. McKinstry,Lori C. Jordan,Michael R. DeBaun,Andria L. Ford
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:54 (8): 2096-2104
标识
DOI:10.1161/strokeaha.123.042683
摘要

Silent cerebral infarcts (SCI) in sickle cell anemia (SCA) are associated with future strokes and cognitive impairment, warranting early diagnosis and treatment. Detection of SCI, however, is limited by their small size, especially when neuroradiologists are unavailable. We hypothesized that deep learning may permit automated SCI detection in children and young adults with SCA as a tool to identify the presence and extent of SCI in clinical and research settings.We utilized UNet-a deep learning model-for fully automated SCI segmentation. We trained and optimized UNet using brain magnetic resonance imaging from the SIT trial (Silent Infarct Transfusion). Neuroradiologists provided the ground truth for SCI diagnosis, while a vascular neurologist manually delineated SCI on fluid-attenuated inversion recovery and provided the ground truth for SCI segmentation. UNet was optimized for the highest spatial overlap between automatic and manual delineation (dice similarity coefficient). The optimized UNet was externally validated using an independent single-center prospective cohort of SCA participants. Model performance was evaluated through sensitivity and accuracy (%correct cases) for SCI diagnosis, dice similarity coefficient, intraclass correlation coefficient (metric of volumetric agreement), and Spearman correlation.The SIT trial (n=926; 31% with SCI; median age, 8.9 years) and external validation (n=80; 50% with SCI; age, 11.5 years) cohorts had small median lesion volumes of 0.40 and 0.25 mL, respectively. Compared with the neuroradiology diagnosis, UNet predicted SCI presence with 100% sensitivity and 74% accuracy. In magnetic resonance imaging with SCI, UNet reached a moderate spatial agreement (dice similarity coefficient, 0.48) and high volumetric agreement (intraclass correlation coefficient, 0.76; ρ=0.72; P<0.001) between automatic and manual segmentations.UNet, trained using a large pediatric SCA magnetic resonance imaging data set, sensitively detected small SCI in children and young adults with SCA. While additional training is needed, UNet may be integrated into the clinical workflow as a screening tool, aiding in SCI diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
星辰大海应助大橙子采纳,获得10
9秒前
9秒前
七QI完成签到 ,获得积分10
10秒前
13秒前
褚香旋完成签到,获得积分10
13秒前
一只狗东西完成签到 ,获得积分10
15秒前
宇老师发布了新的文献求助10
16秒前
17秒前
qiqi发布了新的文献求助30
19秒前
大橙子发布了新的文献求助10
22秒前
wzhang完成签到,获得积分10
23秒前
ken131完成签到 ,获得积分10
26秒前
myl完成签到,获得积分10
27秒前
728完成签到,获得积分10
33秒前
xiaofeng5838完成签到,获得积分10
33秒前
ronnie完成签到,获得积分10
33秒前
36秒前
寒冷芷蕊完成签到,获得积分20
36秒前
36秒前
Jane完成签到,获得积分10
36秒前
一氧化二氢完成签到,获得积分10
42秒前
凡事发生必有利于我完成签到,获得积分10
43秒前
yihaiqin完成签到 ,获得积分10
47秒前
轩辕剑身完成签到,获得积分0
47秒前
coolkid完成签到 ,获得积分0
48秒前
你怎么那么美完成签到,获得积分10
48秒前
游艺完成签到 ,获得积分10
51秒前
冬月完成签到 ,获得积分10
51秒前
薛乎虚完成签到 ,获得积分10
52秒前
53秒前
大胖完成签到,获得积分10
53秒前
野火197完成签到,获得积分10
57秒前
58秒前
量子星尘发布了新的文献求助10
1分钟前
April完成签到,获得积分10
1分钟前
周舟完成签到 ,获得积分10
1分钟前
V_I_G完成签到 ,获得积分10
1分钟前
nick完成签到,获得积分10
1分钟前
高高高完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022