Transcriptional intra-tumour heterogeneity predicted by deep learning in routine breast histopathology slides provides independent prognostic information

比例危险模型 危险系数 肿瘤科 内科学 医学 组织病理学 队列 乳腺癌 人表皮生长因子受体2 癌症 卷积神经网络 病理 人工智能 计算机科学 置信区间
作者
Yinxi Wang,Maya Alsheh Ali,Johan Vallon‐Christersson,Keith Humphreys,Johan Hartman,Mattias Rantalainen
出处
期刊:European Journal of Cancer [Elsevier]
卷期号:191: 112953-112953 被引量:11
标识
DOI:10.1016/j.ejca.2023.112953
摘要

Intra-tumour heterogeneity (ITH) causes diagnostic challenges and increases the risk for disease recurrence. Quantification of ITH is challenging and has not been demonstrated in large studies. It has previously been shown that deep learning can enable spatially resolved prediction of molecular phenotypes from digital histopathology whole slide images (WSIs). Here we propose a novel method (Deep-ITH) to predict and measure ITH, and we evaluate its prognostic performance in breast cancer.Deep convolutional neural networks were used to spatially predict gene-expression (PAM50 set) from WSIs. For each predicted transcript, 12 measures of heterogeneity were extracted in the training data set (N = 931). A prognostic score to dichotomise patients into Deep-ITH low- and high-risk groups was established using an elastic-net regularised Cox proportional hazards model (recurrence-free survival). Prognostic performance was evaluated in two independent data sets: SöS-BC-1 (N = 1358) and SCAN-B-Lund (N = 1262).We observed an increase in risk of recurrence in the high-risk group with hazard ratio (HR) 2.11 (95%CI:1.22-3.60; p = 0.007) using nested cross-validation. Subgroup analyses confirmed the prognostic performance in oestrogen receptor (ER)-positive, human epidermal growth factor receptor 2 (HER2)-negative, grade 3, and large tumour subgroups. The prognostic value was confirmed in the independent SöS-BC-1 cohort (HR=1.84; 95%CI:1.03-3.3; p = 3.99 ×10-2). In the other external cohort, significant HR was observed in the subgroup of histological grade 2 patients, as well as in the subgroup of patients with small tumours (<20 mm).We developed a novel method for an automated, scalable, and cost-efficient measure of ITH from WSIs that provides independent prognostic value for breast cancer.Transcriptional ITH predicted by deep learning models enables prediction of patient survival from routine histopathology WSIs in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLY发布了新的文献求助10
刚刚
2秒前
Zymiao发布了新的文献求助10
2秒前
beizi发布了新的文献求助10
3秒前
害羞的雪萍完成签到,获得积分10
3秒前
安静碧灵发布了新的文献求助10
3秒前
3秒前
南宫清涟应助yangyangzijiajia采纳,获得30
4秒前
987发布了新的文献求助10
4秒前
4秒前
IMALL完成签到,获得积分10
4秒前
ramsey33发布了新的文献求助10
4秒前
hk1900发布了新的文献求助10
5秒前
负责的芒果完成签到,获得积分10
5秒前
机灵鸡应助有魅力熊猫采纳,获得10
5秒前
sss关闭了sss文献求助
5秒前
6秒前
6秒前
coco完成签到,获得积分10
7秒前
SciGPT应助zhaoxiao采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
Jasper应助Man_proposes采纳,获得10
9秒前
Guo完成签到,获得积分10
9秒前
今后应助dawei采纳,获得10
9秒前
9秒前
dou完成签到,获得积分10
9秒前
10秒前
10秒前
深情涵山发布了新的文献求助10
10秒前
kohu发布了新的文献求助10
11秒前
舒屿望迷完成签到,获得积分10
11秒前
xixi发布了新的文献求助10
12秒前
宁静发布了新的文献求助10
12秒前
朱一龙发布了新的文献求助10
12秒前
13秒前
13秒前
波儿完成签到,获得积分10
13秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3410746
求助须知:如何正确求助?哪些是违规求助? 3014215
关于积分的说明 8862656
捐赠科研通 2701720
什么是DOI,文献DOI怎么找? 1481190
科研通“疑难数据库(出版商)”最低求助积分说明 684739
邀请新用户注册赠送积分活动 679247