Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers

计算机科学 编码器 人工智能 分割 变压器 卷积神经网络 模式识别(心理学) 计算机视觉 棱锥(几何) 量子力学 操作系统 光学 物理 电压
作者
Bo Dong,Wenhai Wang,Deng-Ping Fan,Jinpeng Li,Huazhu Fu,Ling Shao
标识
DOI:10.26599/air.2023.9150015
摘要

Most polyp segmentation methods use convolutional neural networks (CNNs) as their backbone, leading to two key issues when exchanging information between the encoder and decoder: (1) taking into account the differences in contribution between different-level features, and (2) designing an effective mechanism for fusing these features. Unlike existing CNN-based methods, we adopt a transformer encoder, which learns more powerful and robust representations. In addition, considering the image acquisition influence and elusive properties of polyps, we introduce three standard modules, including a cascaded fusion module (CFM), a camouflage identification module (CIM), and a similarity aggregation module (SAM). Among these, the CFM is used to collect the semantic and location information of polyps from high-level features; the CIM is applied to capture polyp information disguised in low-level features, and the SAM extends the pixel features of the polyp area with high-level semantic position information to the entire polyp area, thereby effectively fusing cross-level features. The proposed model, named Polyp-PVT, effectively suppresses noises in the features and significantly improves their expressive capabilities. Extensive experiments on five widely adopted datasets show that the proposed model is more robust to various challenging situations (e.g., appearance changes, small objects, and rotation) than existing representative methods. The proposed model is available at https://github.com/DengPingFan/Polyp-PVT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
严格发布了新的文献求助10
1秒前
orixero应助yy采纳,获得10
2秒前
3秒前
zjfmmu完成签到,获得积分10
3秒前
我睡觉的时候不困完成签到,获得积分10
3秒前
SXM发布了新的文献求助10
4秒前
5秒前
yin应助神麒小雪采纳,获得10
6秒前
李健应助三木采纳,获得10
7秒前
7秒前
1970223492发布了新的文献求助10
7秒前
王大帅哥完成签到,获得积分10
8秒前
9秒前
Young完成签到 ,获得积分10
9秒前
共享精神应助xuan采纳,获得10
9秒前
9秒前
今后应助大意的安白采纳,获得10
9秒前
abcdefg发布了新的文献求助30
10秒前
10秒前
明月清风完成签到,获得积分10
10秒前
10秒前
junzhu完成签到,获得积分10
11秒前
花花完成签到,获得积分10
12秒前
13秒前
沉默访冬完成签到,获得积分10
13秒前
NexusExplorer应助LRRAM_809采纳,获得10
13秒前
15秒前
wdw2501发布了新的文献求助10
15秒前
Hs关注了科研通微信公众号
16秒前
一一发布了新的文献求助30
16秒前
16秒前
归尘发布了新的文献求助10
16秒前
windyTE发布了新的文献求助10
17秒前
大力初珍完成签到 ,获得积分10
17秒前
17秒前
19秒前
彭佳丽完成签到,获得积分10
19秒前
李爱国应助abcdefg采纳,获得10
20秒前
関电脑完成签到,获得积分10
21秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470472
求助须知:如何正确求助?哪些是违规求助? 3063446
关于积分的说明 9083480
捐赠科研通 2753873
什么是DOI,文献DOI怎么找? 1511131
邀请新用户注册赠送积分活动 698303
科研通“疑难数据库(出版商)”最低求助积分说明 698147