Toward personalized decision making for autonomous vehicles: A constrained multi-objective reinforcement learning technique

强化学习 计算机科学 贝尔曼方程 偏爱 约束(计算机辅助设计) 数学优化 帕累托原理 人工智能 状态空间 动作(物理) 空格(标点符号) 机器学习 工程类 数学 物理 操作系统 统计 机械工程 量子力学
作者
Xiangkun He,Chen Lv
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:156: 104352-104352 被引量:14
标识
DOI:10.1016/j.trc.2023.104352
摘要

Reinforcement learning promises to provide a state-of-the-art solution to the decision making problem of autonomous driving. Nonetheless, numerous real-world decision making problems involve balancing multiple conflicting or competing objectives. In addition, passengers may typically prefer to explore diversified driving modes through their specific preferences (i.e., relative importance of different objectives). Taking into account these demands, traditional reinforcement learning algorithms with applications in personalized self-driving vehicles remain challenging. Consequently, here we present a novel constrained multi-objective reinforcement learning technique for personalized decision making in autonomous driving, with the goal of learning a single model for Pareto optimal policies across the space of all possible user preferences. Specifically, a nonlinear constraint incorporating a user-specified preference and a vectorized action–value function is introduced to ensure both diversity in learned decision behaviors and efficient alignment between the user-specified preference and the corresponding optimal policy. Additionally, a constrained multi-objective actor–critic approach is advanced to approximate the Pareto optimal policies for any user-specified preferences while adhering to the nonlinear constraint. Finally, the proposed personalized decision making scheme for autonomous driving is assessed in a highway on-ramp merging scenario with dynamic traffic flows. The results demonstrate the effectiveness of our method by comparing it with classical and state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车茗应助春山采纳,获得20
刚刚
1秒前
1秒前
蚂蚱完成签到 ,获得积分10
1秒前
1秒前
1秒前
李健应助晓晓雪采纳,获得10
1秒前
2秒前
2秒前
2秒前
Bio_yu721发布了新的文献求助10
2秒前
想做只小博狗完成签到,获得积分10
2秒前
Li发布了新的文献求助10
2秒前
NZH发布了新的文献求助20
3秒前
细腻乐珍发布了新的文献求助10
3秒前
幸运星完成签到,获得积分10
3秒前
4秒前
英姑应助机灵的幻柏采纳,获得10
5秒前
5秒前
rr发布了新的文献求助10
5秒前
芸沐发布了新的文献求助10
6秒前
玄同发布了新的文献求助10
7秒前
曾经二娘发布了新的文献求助10
7秒前
图里琛发布了新的文献求助10
8秒前
昨天发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
可口可乐发布了新的文献求助10
10秒前
Bearbiscuit完成签到,获得积分10
10秒前
万能图书馆应助xingyuncao采纳,获得30
10秒前
11秒前
11秒前
雪山飞狐发布了新的文献求助10
11秒前
科研通AI2S应助Nyanpasu采纳,获得30
12秒前
13秒前
13秒前
13秒前
14秒前
慕青应助昨天采纳,获得10
14秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123361
求助须知:如何正确求助?哪些是违规求助? 2773880
关于积分的说明 7719958
捐赠科研通 2429599
什么是DOI,文献DOI怎么找? 1290357
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251