Toward personalized decision making for autonomous vehicles: A constrained multi-objective reinforcement learning technique

强化学习 计算机科学 贝尔曼方程 偏爱 约束(计算机辅助设计) 数学优化 帕累托原理 人工智能 状态空间 动作(物理) 空格(标点符号) 机器学习 工程类 数学 物理 操作系统 统计 机械工程 量子力学
作者
Xiangkun He,Chen Lv
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:156: 104352-104352 被引量:14
标识
DOI:10.1016/j.trc.2023.104352
摘要

Reinforcement learning promises to provide a state-of-the-art solution to the decision making problem of autonomous driving. Nonetheless, numerous real-world decision making problems involve balancing multiple conflicting or competing objectives. In addition, passengers may typically prefer to explore diversified driving modes through their specific preferences (i.e., relative importance of different objectives). Taking into account these demands, traditional reinforcement learning algorithms with applications in personalized self-driving vehicles remain challenging. Consequently, here we present a novel constrained multi-objective reinforcement learning technique for personalized decision making in autonomous driving, with the goal of learning a single model for Pareto optimal policies across the space of all possible user preferences. Specifically, a nonlinear constraint incorporating a user-specified preference and a vectorized action–value function is introduced to ensure both diversity in learned decision behaviors and efficient alignment between the user-specified preference and the corresponding optimal policy. Additionally, a constrained multi-objective actor–critic approach is advanced to approximate the Pareto optimal policies for any user-specified preferences while adhering to the nonlinear constraint. Finally, the proposed personalized decision making scheme for autonomous driving is assessed in a highway on-ramp merging scenario with dynamic traffic flows. The results demonstrate the effectiveness of our method by comparing it with classical and state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Autoimmune发布了新的文献求助10
刚刚
帅气惜霜发布了新的文献求助10
1秒前
苏照杭应助Ll采纳,获得10
1秒前
LL完成签到 ,获得积分10
2秒前
后青春期的痘完成签到,获得积分10
2秒前
sun完成签到 ,获得积分10
3秒前
jiang完成签到 ,获得积分10
4秒前
4秒前
苏卿应助郑开司09采纳,获得10
4秒前
湖月照我影完成签到 ,获得积分10
4秒前
Orange应助龙歪歪采纳,获得10
4秒前
Jack发布了新的文献求助10
4秒前
5秒前
JACK发布了新的文献求助10
5秒前
卿欣完成签到 ,获得积分10
6秒前
莉莉发布了新的文献求助10
6秒前
红烧茄子完成签到,获得积分10
6秒前
默默柚子完成签到,获得积分10
6秒前
nini完成签到 ,获得积分10
6秒前
陶醉海露完成签到,获得积分10
7秒前
7秒前
苗槐完成签到,获得积分10
7秒前
阳光的沉鱼完成签到,获得积分10
7秒前
大模型应助白华苍松采纳,获得10
8秒前
zyp应助火焰向上采纳,获得10
8秒前
8秒前
123456完成签到,获得积分10
8秒前
深情安青应助半颗橙子采纳,获得10
8秒前
CodeCraft应助123采纳,获得10
9秒前
隐形曼青应助心花怒放采纳,获得10
9秒前
酷酷的如天完成签到,获得积分10
9秒前
9秒前
常常完成签到,获得积分10
9秒前
9秒前
HH完成签到,获得积分10
9秒前
10秒前
10秒前
SandyH完成签到,获得积分10
10秒前
Jack完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762