Quantifying common and distinct information in single-cell multimodal data with Tilted Canonical Correlation Analysis

典型相关 模态(人机交互) 计算机科学 嵌入 转录组 可视化 降维 计算生物学 编码(内存) 人工智能 模式识别(心理学) 数据可视化 模式 数据挖掘 生物 遗传学 基因 社会科学 基因表达 社会学
作者
Kevin Lin,Nancy R. Zhang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:120 (32) 被引量:2
标识
DOI:10.1073/pnas.2303647120
摘要

Multimodal single-cell technologies profile multiple modalities for each cell simultaneously, enabling a more thorough characterization of cell populations. Existing dimension-reduction methods for multimodal data capture the “union of information,” producing a lower-dimensional embedding that combines the information across modalities. While these tools are useful, we focus on a fundamentally different task of separating and quantifying the information among cells that is shared between the two modalities as well as unique to only one modality. Hence, we develop Tilted Canonical Correlation Analysis (Tilted-CCA), a method that decomposes a paired multimodal dataset into three lower-dimensional embeddings—one embedding captures the “intersection of information,” representing the geometric relations among the cells that is common to both modalities, while the remaining two embeddings capture the “distinct information for a modality,” representing the modality-specific geometric relations. We analyze single-cell multimodal datasets sequencing RNA along surface antibodies (i.e., CITE-seq) as well as RNA alongside chromatin accessibility (i.e., 10x) for blood cells and developing neurons via Tilted-CCA. These analyses show that Tilted-CCA enables meaningful visualization and quantification of the cross-modal information. Finally, Tilted-CCA’s framework allows us to perform two specific downstream analyses. First, for single-cell datasets that simultaneously profile transcriptome and surface antibody markers, we show that Tilted-CCA helps design the target antibody panel to complement the transcriptome best. Second, for developmental single-cell datasets that simultaneously profile transcriptome and chromatin accessibility, we show that Tilted-CCA helps identify development-informative genes and distinguish between transient versus terminal cell types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意的问枫完成签到 ,获得积分10
刚刚
1秒前
自觉画笔完成签到 ,获得积分10
2秒前
fuxiaobao关注了科研通微信公众号
3秒前
zjj完成签到,获得积分10
4秒前
默默白开水完成签到 ,获得积分10
4秒前
li完成签到,获得积分20
5秒前
xxywmt发布了新的文献求助10
5秒前
笨笨的蜡烛完成签到,获得积分10
7秒前
CipherSage应助wanwan采纳,获得30
7秒前
从容的寒安完成签到,获得积分20
7秒前
jlj完成签到,获得积分10
8秒前
wen发布了新的文献求助10
11秒前
yunjian1583完成签到,获得积分10
12秒前
权志龙完成签到,获得积分10
12秒前
科研鬼才完成签到,获得积分10
13秒前
Lucas应助Yummy采纳,获得10
14秒前
xxywmt完成签到,获得积分10
16秒前
czz完成签到,获得积分10
17秒前
博qb完成签到,获得积分10
18秒前
bin完成签到,获得积分10
18秒前
君莫笑发布了新的文献求助10
19秒前
Orange应助美丽的又菡采纳,获得10
19秒前
ZQ发布了新的文献求助10
19秒前
雷培发布了新的文献求助10
20秒前
ai完成签到,获得积分20
21秒前
米味锅巴完成签到,获得积分10
26秒前
知友完成签到,获得积分10
26秒前
假道士完成签到 ,获得积分20
28秒前
IV完成签到,获得积分10
30秒前
赵梦然关注了科研通微信公众号
31秒前
123456完成签到,获得积分10
32秒前
32秒前
lysixsixsix完成签到,获得积分10
33秒前
luyue9406完成签到,获得积分10
33秒前
34秒前
jameslee04完成签到 ,获得积分10
34秒前
科研通AI5应助雷培采纳,获得80
35秒前
Lee完成签到 ,获得积分10
36秒前
香蕉觅云应助whatever采纳,获得10
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997687
求助须知:如何正确求助?哪些是违规求助? 3537226
关于积分的说明 11271044
捐赠科研通 3276377
什么是DOI,文献DOI怎么找? 1806965
邀请新用户注册赠送积分活动 883609
科研通“疑难数据库(出版商)”最低求助积分说明 809975