Quantifying common and distinct information in single-cell multimodal data with Tilted Canonical Correlation Analysis

典型相关 模态(人机交互) 计算机科学 嵌入 转录组 可视化 降维 计算生物学 编码(内存) 人工智能 模式识别(心理学) 数据可视化 模式 数据挖掘 生物 遗传学 基因 社会科学 基因表达 社会学
作者
Kevin Lin,Nancy R. Zhang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (32) 被引量:2
标识
DOI:10.1073/pnas.2303647120
摘要

Multimodal single-cell technologies profile multiple modalities for each cell simultaneously, enabling a more thorough characterization of cell populations. Existing dimension-reduction methods for multimodal data capture the “union of information,” producing a lower-dimensional embedding that combines the information across modalities. While these tools are useful, we focus on a fundamentally different task of separating and quantifying the information among cells that is shared between the two modalities as well as unique to only one modality. Hence, we develop Tilted Canonical Correlation Analysis (Tilted-CCA), a method that decomposes a paired multimodal dataset into three lower-dimensional embeddings—one embedding captures the “intersection of information,” representing the geometric relations among the cells that is common to both modalities, while the remaining two embeddings capture the “distinct information for a modality,” representing the modality-specific geometric relations. We analyze single-cell multimodal datasets sequencing RNA along surface antibodies (i.e., CITE-seq) as well as RNA alongside chromatin accessibility (i.e., 10x) for blood cells and developing neurons via Tilted-CCA. These analyses show that Tilted-CCA enables meaningful visualization and quantification of the cross-modal information. Finally, Tilted-CCA’s framework allows us to perform two specific downstream analyses. First, for single-cell datasets that simultaneously profile transcriptome and surface antibody markers, we show that Tilted-CCA helps design the target antibody panel to complement the transcriptome best. Second, for developmental single-cell datasets that simultaneously profile transcriptome and chromatin accessibility, we show that Tilted-CCA helps identify development-informative genes and distinguish between transient versus terminal cell types.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
orixero应助欢呼凝冬采纳,获得10
1秒前
诗乃发布了新的文献求助10
1秒前
十一发布了新的文献求助10
1秒前
2秒前
qll完成签到,获得积分10
2秒前
傅荣轩完成签到,获得积分10
2秒前
4秒前
刻苦黎云完成签到,获得积分10
4秒前
4秒前
活力立诚完成签到,获得积分10
4秒前
5秒前
5秒前
NANI发布了新的文献求助10
6秒前
flippedaaa完成签到 ,获得积分10
7秒前
hailan发布了新的文献求助10
7秒前
朴实迎梅发布了新的文献求助10
7秒前
在水一方应助凡凡采纳,获得10
7秒前
忧心的碧完成签到,获得积分20
8秒前
8秒前
优雅的废完成签到,获得积分10
9秒前
FashionBoy应助optics1992采纳,获得10
10秒前
10秒前
等待的龙猫完成签到,获得积分10
10秒前
tanc完成签到,获得积分10
10秒前
10秒前
高高天抒完成签到,获得积分10
11秒前
英俊的铭应助zz采纳,获得10
11秒前
11秒前
ENG发布了新的文献求助10
11秒前
12秒前
Azure完成签到,获得积分10
12秒前
廿二发布了新的文献求助30
13秒前
量子星尘发布了新的文献求助10
13秒前
神勇晓旋完成签到,获得积分10
13秒前
eye完成签到,获得积分10
13秒前
十一完成签到,获得积分10
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027