已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantifying common and distinct information in single-cell multimodal data with Tilted Canonical Correlation Analysis

典型相关 模态(人机交互) 计算机科学 嵌入 转录组 可视化 降维 计算生物学 编码(内存) 人工智能 模式识别(心理学) 数据可视化 模式 数据挖掘 生物 遗传学 基因 社会科学 基因表达 社会学
作者
Kevin Lin,Nancy R. Zhang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (32) 被引量:2
标识
DOI:10.1073/pnas.2303647120
摘要

Multimodal single-cell technologies profile multiple modalities for each cell simultaneously, enabling a more thorough characterization of cell populations. Existing dimension-reduction methods for multimodal data capture the “union of information,” producing a lower-dimensional embedding that combines the information across modalities. While these tools are useful, we focus on a fundamentally different task of separating and quantifying the information among cells that is shared between the two modalities as well as unique to only one modality. Hence, we develop Tilted Canonical Correlation Analysis (Tilted-CCA), a method that decomposes a paired multimodal dataset into three lower-dimensional embeddings—one embedding captures the “intersection of information,” representing the geometric relations among the cells that is common to both modalities, while the remaining two embeddings capture the “distinct information for a modality,” representing the modality-specific geometric relations. We analyze single-cell multimodal datasets sequencing RNA along surface antibodies (i.e., CITE-seq) as well as RNA alongside chromatin accessibility (i.e., 10x) for blood cells and developing neurons via Tilted-CCA. These analyses show that Tilted-CCA enables meaningful visualization and quantification of the cross-modal information. Finally, Tilted-CCA’s framework allows us to perform two specific downstream analyses. First, for single-cell datasets that simultaneously profile transcriptome and surface antibody markers, we show that Tilted-CCA helps design the target antibody panel to complement the transcriptome best. Second, for developmental single-cell datasets that simultaneously profile transcriptome and chromatin accessibility, we show that Tilted-CCA helps identify development-informative genes and distinguish between transient versus terminal cell types.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二三语逢山外山完成签到 ,获得积分10
1秒前
小蘑菇应助哈哈哈采纳,获得10
1秒前
平淡画笔完成签到,获得积分10
3秒前
芒果完成签到 ,获得积分10
15秒前
15秒前
小小鱼完成签到 ,获得积分10
16秒前
狐妖完成签到,获得积分10
19秒前
Orange应助火星上的碧空采纳,获得10
20秒前
侯长秀完成签到 ,获得积分10
20秒前
Mercury完成签到 ,获得积分10
21秒前
CipherSage应助毛公采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
CipherSage应助科研通管家采纳,获得10
24秒前
BowieHuang应助科研通管家采纳,获得10
24秒前
BowieHuang应助科研通管家采纳,获得10
24秒前
我是老大应助科研通管家采纳,获得10
24秒前
tejing1158完成签到 ,获得积分10
27秒前
孤独如曼完成签到 ,获得积分10
30秒前
32秒前
32秒前
寒生完成签到,获得积分10
35秒前
36秒前
哈哈哈发布了新的文献求助10
36秒前
shy完成签到,获得积分10
39秒前
呈歌完成签到 ,获得积分10
39秒前
chencf完成签到,获得积分10
39秒前
41秒前
wx完成签到 ,获得积分10
41秒前
科研通AI6应助奶昔采纳,获得10
43秒前
研友_5Y9775发布了新的文献求助10
45秒前
49秒前
51秒前
leemiii完成签到 ,获得积分10
53秒前
55秒前
cc发布了新的文献求助10
55秒前
57秒前
ZijianHu完成签到,获得积分10
57秒前
VDC关闭了VDC文献求助
1分钟前
寰2023发布了新的文献求助10
1分钟前
三个气的大门完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590260
求助须知:如何正确求助?哪些是违规求助? 4674672
关于积分的说明 14795002
捐赠科研通 4630943
什么是DOI,文献DOI怎么找? 2532648
邀请新用户注册赠送积分活动 1501221
关于科研通互助平台的介绍 1468576