清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Progressive matching method of aerial-ground remote sensing image via multi-scale context feature coding

航空影像 计算机科学 人工智能 计算机视觉 基本事实 尺度不变特征变换 航空摄影 编码(社会科学) 航空影像 背景(考古学) 特征(语言学) 块(置换群论) 匹配(统计) 遥感 比例(比率) 模式识别(心理学) 特征提取 图像(数学) 地理 地图学 数学 考古 语言学 几何学 哲学 统计
作者
Chuan Xu,Jia Xu,Tao Huang,Huan Zhang,Liye Mei,Zhaoqiang Xia,Daren Yu,Wei Yang
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (19): 5876-5895
标识
DOI:10.1080/01431161.2023.2255352
摘要

ABSTRACTThe fine 3D model is the essential spatial information for the construction of a smart city. UAV aerial images with large-scale scene perception ability are common data sources for 3D modelling of cities at present. However, in some complex urban areas, a single aerial image is difficult to capture the 3D scene information because of the existence of some problems such as inaccurate edges, holes, and blurred building facade textures due to changes in perspective and area occlusion. Therefore, how to solve perspective changes and area occlusion of the aerial image quickly and efficiently has become an important problem. The ground image can be used as an important supplement to solve the problem of missing bottom and area occlusion in oblique photography modelling. Thus, this article proposes a progressive matching method via multi-scale context feature coding network to achieve robust matching of aerial-ground remote sensing images, which provides better technical support for urban modelling. The main idea consists of three parts: (1) a multi-scale context feature coding network is designed to extract feature on aerial-ground images efficiently; (2) a block-based matching strategy is proposed to pay more attention to local features of the aerial-ground images; (3) a progressive matching method is applied in block matching stage to obtain more accurate features. We used eight sets of typical data, such as aerial images captured by the drone DJI-MAVIC2 and ground images captured by handheld devices as experimental objects, and compared them with algorithms such as SIFT, D2-net, DFM and SuperGlue. Experimental results show that our proposed aerial-ground image matching method has a good performance that the average NCM has improved 2.1–8.2 times, and the average rate of correct matching has an average increase of 26% points with the average root of mean square error is only 1.48 pixels.KEYWORDS: 3D modelaerial-ground remote sensing imagelarge buildingsfeature matchingdeep learning Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the National Innovation and Entrepreneurship Training Project for University (China) [202210500028].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joeswith完成签到,获得积分10
9秒前
超级的妙晴完成签到 ,获得积分10
9秒前
dreamwalk完成签到 ,获得积分10
20秒前
葫芦芦芦完成签到 ,获得积分10
21秒前
25秒前
MishimaErika发布了新的文献求助20
30秒前
淞淞于我完成签到 ,获得积分10
32秒前
33秒前
时尚丹寒完成签到 ,获得积分10
34秒前
MishimaErika完成签到,获得积分10
49秒前
1分钟前
1分钟前
1分钟前
2分钟前
炜大的我应助科研通管家采纳,获得10
2分钟前
wickedzz完成签到,获得积分10
2分钟前
紫熊完成签到,获得积分10
2分钟前
jwq完成签到,获得积分10
2分钟前
LIVE完成签到,获得积分10
2分钟前
Ji完成签到,获得积分10
2分钟前
2分钟前
jerry完成签到 ,获得积分10
3分钟前
或无情完成签到 ,获得积分10
3分钟前
嬗变的天秤完成签到,获得积分10
3分钟前
3分钟前
creep2020完成签到,获得积分10
4分钟前
4分钟前
5分钟前
眯眯眼的衬衫应助mouset270采纳,获得30
6分钟前
6分钟前
lichee完成签到 ,获得积分10
6分钟前
7分钟前
上官若男应助blanche采纳,获得10
7分钟前
LouieHuang发布了新的文献求助10
7分钟前
7分钟前
7分钟前
LouieHuang完成签到,获得积分10
7分钟前
blanche发布了新的文献求助10
7分钟前
7分钟前
7分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3381348
求助须知:如何正确求助?哪些是违规求助? 2996254
关于积分的说明 8767871
捐赠科研通 2681518
什么是DOI,文献DOI怎么找? 1468546
科研通“疑难数据库(出版商)”最低求助积分说明 679041
邀请新用户注册赠送积分活动 671114