亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Breast Density Assessment in MRI Using Deep Learning and Radiomics: Strategies for Reducing Inter‐Observer Variability

无线电技术 双雷达 乳房磁振造影 深度学习 磁共振成像 计算机科学 人工智能 医学 医学物理学 放射科 乳腺癌 乳腺摄影术 内科学 癌症
作者
Xueping Jing,Mirjam Wielema,Andrea G. Monroy‐Gonzalez,Thom R.G. Stams,Shekar V.K. Mahesh,Matthijs Oudkerk,Paul E. Sijens,Monique D. Dorrius,Peter M. A. van Ooijen
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (1): 80-91 被引量:1
标识
DOI:10.1002/jmri.29058
摘要

Background Accurate breast density evaluation allows for more precise risk estimation but suffers from high inter‐observer variability. Purpose To evaluate the feasibility of reducing inter‐observer variability of breast density assessment through artificial intelligence (AI) assisted interpretation. Study Type Retrospective. Population Six hundred and twenty‐one patients without breast prosthesis or reconstructions were randomly divided into training (N = 377), validation (N = 98), and independent test (N = 146) datasets. Field Strength/Sequence 1.5 T and 3.0 T; T1‐weighted spectral attenuated inversion recovery. Assessment Five radiologists independently assessed each scan in the independent test set to establish the inter‐observer variability baseline and to reach a reference standard. Deep learning and three radiomics models were developed for three classification tasks: (i) four Breast Imaging‐Reporting and Data System (BI‐RADS) breast composition categories (A–D), (ii) dense (categories C, D) vs. non‐dense (categories A, B), and (iii) extremely dense (category D) vs. moderately dense (categories A–C). The models were tested against the reference standard on the independent test set. AI‐assisted interpretation was performed by majority voting between the models and each radiologist's assessment. Statistical Tests Inter‐observer variability was assessed using linear‐weighted kappa ( κ ) statistics. Kappa statistics, accuracy, and area under the receiver operating characteristic curve (AUC) were used to assess models against reference standard. Results In the independent test set, five readers showed an overall substantial agreement on tasks (i) and (ii), but moderate agreement for task (iii). The best‐performing model showed substantial agreement with reference standard for tasks (i) and (ii), but moderate agreement for task (iii). With the assistance of the AI models, almost perfect inter‐observer variability was obtained for tasks (i) (mean κ = 0.86), (ii) (mean κ = 0.94), and (iii) (mean κ = 0.94). Data Conclusion Deep learning and radiomics models have the potential to help reduce inter‐observer variability of breast density assessment. Level of Evidence 3 Technical Efficacy Stage 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
氯丙嗪完成签到 ,获得积分10
11秒前
体贴的雁菱完成签到,获得积分10
51秒前
54秒前
57秒前
123完成签到,获得积分10
2分钟前
科研通AI2S应助呆萌盼柳采纳,获得10
3分钟前
3分钟前
丘比特应助糜厉采纳,获得10
3分钟前
4分钟前
糜厉发布了新的文献求助10
4分钟前
suchashing完成签到 ,获得积分10
4分钟前
h0jian09完成签到,获得积分10
4分钟前
qqq完成签到,获得积分10
5分钟前
5分钟前
6分钟前
Jiang发布了新的文献求助10
6分钟前
上官若男应助Paddi采纳,获得10
6分钟前
6分钟前
Paddi发布了新的文献求助10
6分钟前
Paddi完成签到,获得积分10
6分钟前
Jiang完成签到,获得积分10
7分钟前
7分钟前
Jiang发布了新的文献求助10
7分钟前
大个应助科研通管家采纳,获得10
7分钟前
舒适的方盒完成签到 ,获得积分10
8分钟前
明理的慕蕊完成签到,获得积分10
8分钟前
正同学应助pysa采纳,获得10
8分钟前
Noob_saibot完成签到,获得积分10
8分钟前
谨慎火完成签到,获得积分10
8分钟前
NexusExplorer应助Noob_saibot采纳,获得10
8分钟前
脑洞疼应助Ji采纳,获得10
9分钟前
Ji完成签到,获得积分10
9分钟前
9分钟前
小乙猪完成签到 ,获得积分0
10分钟前
汉德萌多林完成签到,获得积分10
11分钟前
搜集达人应助Cherry采纳,获得10
11分钟前
螃蟹One完成签到 ,获得积分10
11分钟前
饭团不吃鱼完成签到,获得积分10
12分钟前
科研通AI2S应助小马采纳,获得30
13分钟前
Flex发布了新的文献求助10
13分钟前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207751
求助须知:如何正确求助?哪些是违规求助? 2857006
关于积分的说明 8108364
捐赠科研通 2522603
什么是DOI,文献DOI怎么找? 1355902
科研通“疑难数据库(出版商)”最低求助积分说明 642234
邀请新用户注册赠送积分活动 613670