Electrochemical self-powered strain sensor for static and dynamic strain detections

材料科学 电化学气体传感器 电极 电化学 摩擦电效应 电解质 碳纳米管 复合材料 纳米技术 化学 物理化学
作者
Qi Huang,Yadong Jiang,Zaihua Duan,Yuanming Wu,Zhen Yuan,Mingxiang Zhang,Qiuni Zhao,Yajie Zhang,Bohao Liu,Huiling Tai
出处
期刊:Nano Energy [Elsevier]
卷期号:118: 108997-108997 被引量:63
标识
DOI:10.1016/j.nanoen.2023.108997
摘要

The self-powered strain sensors based on piezoelectric and triboelectric principles have been widely reported in flexible electronics, but they cannot achieve static strain detection. Inspired by electrochemical reactions, we propose and construct an electrochemical self-powered strain sensor for static and dynamic strain detections. Specifically, the sensor is composed of Cu/Al electrodes, elastic core-spun yarn coated with LiCl-carbon nanotubes (CNTs), and latex tube encapsulation. Among them, Cu and Al electrodes are used for electrochemical reactions; Elastic core-spun yarn endows the sensor with excellent tensile performance; LiCl provides conductive ions in electrochemical reactions; CNTs with good conductivity not only reduce the resistance between Cu and Al electrodes, but also facilitate good resistance strain effect; Latex tube encapsulation inhibits the evaporation of water molecules in the electrolyte. The strain sensing performance of the sensor is evaluated based on the current response. The results show that the sensor has wide strain detection range (2–100 %) and good repeatability (1000 times). By analyzing the strain voltage and current responses, as well as the morphology characterization of the sensor, the strain response mechanism of the sensor has been clarified, which is controlled by electrochemical reactions and resistance strain effect. The static strain monitoring function of the sensor is verified by monitoring finger bending. Combined with machine learning, the sensor can be used for respiratory behavior recognition. This work fundamentally contributes to developing self-powered strain sensor with static and dynamic strain detections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Notorious发布了新的文献求助30
1秒前
lyh应助momo采纳,获得10
1秒前
星辰大海应助infinity采纳,获得10
1秒前
Anderson732发布了新的文献求助10
1秒前
2秒前
研友_LN25rL发布了新的文献求助10
2秒前
雪莉完成签到 ,获得积分10
2秒前
大模型应助gyd采纳,获得10
2秒前
00小费0发布了新的文献求助10
4秒前
星辰大海应助剑影采纳,获得10
4秒前
4秒前
5秒前
王梦秋发布了新的文献求助10
5秒前
xiao双月发布了新的文献求助10
6秒前
贤惠的曼凝完成签到,获得积分10
6秒前
鱼跃发布了新的文献求助10
7秒前
传奇3应助抗氧剂采纳,获得10
7秒前
7秒前
7秒前
朴实的小懒虫完成签到,获得积分10
8秒前
hebishan完成签到,获得积分10
9秒前
cjchem发布了新的文献求助10
10秒前
无花果应助边走边听采纳,获得10
11秒前
11秒前
11秒前
无花果应助feifeifei采纳,获得10
11秒前
开放如天完成签到 ,获得积分10
12秒前
laber应助fangfeng采纳,获得50
12秒前
搜集达人应助三峡好人采纳,获得10
12秒前
12秒前
13秒前
852应助海上钢琴家采纳,获得10
13秒前
luo发布了新的文献求助10
13秒前
13秒前
大个应助追尾的猫采纳,获得10
14秒前
CodeCraft应助闪闪的大炮采纳,获得10
15秒前
科研通AI6应助何小明采纳,获得10
15秒前
顾矜应助Flora采纳,获得10
15秒前
慕青应助奥丁蒂法采纳,获得10
15秒前
芫华发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321077
求助须知:如何正确求助?哪些是违规求助? 4462894
关于积分的说明 13888018
捐赠科研通 4353883
什么是DOI,文献DOI怎么找? 2391403
邀请新用户注册赠送积分活动 1385061
关于科研通互助平台的介绍 1354824