Electrochemical self-powered strain sensor for static and dynamic strain detections

材料科学 电化学气体传感器 电极 电化学 摩擦电效应 电解质 碳纳米管 复合材料 纳米技术 化学 物理化学
作者
Qi Huang,Yadong Jiang,Zaihua Duan,Yuanming Wu,Zhen Yuan,Mingxiang Zhang,Qiuni Zhao,Yajie Zhang,Bohao Liu,Huiling Tai
出处
期刊:Nano Energy [Elsevier]
卷期号:118: 108997-108997 被引量:63
标识
DOI:10.1016/j.nanoen.2023.108997
摘要

The self-powered strain sensors based on piezoelectric and triboelectric principles have been widely reported in flexible electronics, but they cannot achieve static strain detection. Inspired by electrochemical reactions, we propose and construct an electrochemical self-powered strain sensor for static and dynamic strain detections. Specifically, the sensor is composed of Cu/Al electrodes, elastic core-spun yarn coated with LiCl-carbon nanotubes (CNTs), and latex tube encapsulation. Among them, Cu and Al electrodes are used for electrochemical reactions; Elastic core-spun yarn endows the sensor with excellent tensile performance; LiCl provides conductive ions in electrochemical reactions; CNTs with good conductivity not only reduce the resistance between Cu and Al electrodes, but also facilitate good resistance strain effect; Latex tube encapsulation inhibits the evaporation of water molecules in the electrolyte. The strain sensing performance of the sensor is evaluated based on the current response. The results show that the sensor has wide strain detection range (2–100 %) and good repeatability (1000 times). By analyzing the strain voltage and current responses, as well as the morphology characterization of the sensor, the strain response mechanism of the sensor has been clarified, which is controlled by electrochemical reactions and resistance strain effect. The static strain monitoring function of the sensor is verified by monitoring finger bending. Combined with machine learning, the sensor can be used for respiratory behavior recognition. This work fundamentally contributes to developing self-powered strain sensor with static and dynamic strain detections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助小丸子采纳,获得10
刚刚
jy完成签到,获得积分10
1秒前
kavins凯旋发布了新的文献求助10
2秒前
dddd完成签到 ,获得积分10
3秒前
刻苦的菀完成签到,获得积分10
4秒前
MXX完成签到 ,获得积分10
4秒前
我就是柠檬精完成签到,获得积分10
5秒前
陈思宏完成签到,获得积分10
5秒前
小青椒应助ll采纳,获得80
6秒前
王朝阳发布了新的文献求助10
7秒前
科研土狗完成签到 ,获得积分10
7秒前
佳沫完成签到,获得积分10
7秒前
南卡完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
汉堡包应助绿毛怪采纳,获得10
11秒前
11秒前
大个应助lemon采纳,获得10
11秒前
烟花应助Shanglinqin采纳,获得10
12秒前
香蕉觅云应助zhenghua采纳,获得10
13秒前
狗头233发布了新的文献求助10
14秒前
14秒前
14秒前
luster完成签到,获得积分10
14秒前
15秒前
15秒前
xubobo完成签到,获得积分10
15秒前
Annlucy发布了新的文献求助10
16秒前
何以小吉祥完成签到,获得积分10
17秒前
17秒前
18秒前
Owen应助小熊童话书采纳,获得80
18秒前
暴躁无敌发布了新的文献求助10
18秒前
ZhouZhou发布了新的文献求助10
19秒前
19秒前
无极微光应助PhDL1采纳,获得20
19秒前
lalala发布了新的文献求助10
19秒前
之贻发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461185
求助须知:如何正确求助?哪些是违规求助? 4566221
关于积分的说明 14304031
捐赠科研通 4491948
什么是DOI,文献DOI怎么找? 2460543
邀请新用户注册赠送积分活动 1449837
关于科研通互助平台的介绍 1425582