Investigating the nanoscale hardness/strength properties of high-entropy alloy particles using the nanoindentation technique

纳米压痕 材料科学 缩进 纳米尺度 压痕硬度 合金 高熵合金 复合材料 原材料 冶金 材料的强化机理 纳米技术 微观结构 化学 有机化学
作者
Aisa Grace D. Custodio,Klara Joy Lindquist,Marvin S. Tolentino,Clodualdo Aranas,Gobinda C. Saha
标识
DOI:10.1016/j.jalmes.2023.100043
摘要

Particulate feedstock constitutes the building block in modern day additive manufacturing (AM) era. Cold spray (CS) is a leading process technology to adhere to the AM principle. Therefore, meeting feedstock qualities is of utmost interest to ensure the conformability and competitiveness of the developed industrial modules, including coatings, architectured components, and additively repaired devices. This research advances the understanding of nanoscale hardness/strength properties of particulate matters, specifically of an emerging material class, - high-entropy alloys (HEAs). The feasibility of determining the hardness of mechanically alloyed AlCoCrFeNix (x = 0, 1, 2.1) HEA particles was studied employing the nanoindentation technique. Mechanical properties of milled AlCoCrFeNix particles with varying Ni atomic ratio (x = 0, 1, 2.1) were investigated over different milling times ranging between 4 to 24 hours. The study analyzed the impact of mounting resin, pre-determined maximum load, and indentation depth on hardness/strength properties. Results reveal that the hot mounted samples yielded greater accuracy and higher hardness values than compared to those of the cold mounted samples. Additionally, although the low-load sensitivity of AlCoCrFeNix provided consistent nano-scale hardness values across selected loads, their hardness values were found to be depth-dependent. Overall, the study concludes with a methodology for the nano-scale hardness/strength measurement of HEA particles that must account for particle size, sample preparation technique, and nanoindentation test parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
儒雅音响关注了科研通微信公众号
刚刚
细心的日记本完成签到,获得积分10
1秒前
FashionBoy应助司徒不二采纳,获得10
1秒前
3秒前
4秒前
4秒前
chelsea发布了新的文献求助10
6秒前
alexlpb发布了新的文献求助10
7秒前
8秒前
8秒前
匿天发布了新的文献求助30
9秒前
哦吼发布了新的文献求助10
9秒前
9秒前
red发布了新的文献求助10
11秒前
我是老大应助zou采纳,获得10
11秒前
香蕉觅云应助chelsea采纳,获得10
12秒前
我是老大应助苏灿采纳,获得10
13秒前
13秒前
QR发布了新的文献求助10
14秒前
吃土少年应助一二采纳,获得10
14秒前
15秒前
15秒前
111发布了新的文献求助10
17秒前
哦吼完成签到,获得积分20
17秒前
18秒前
18秒前
19秒前
everglow完成签到,获得积分10
19秒前
20秒前
司马千筹发布了新的文献求助10
20秒前
hhhh发布了新的文献求助50
20秒前
kentomomota发布了新的文献求助10
22秒前
24秒前
苏灿发布了新的文献求助10
24秒前
云母完成签到 ,获得积分10
24秒前
25秒前
忧郁的鱿鱼完成签到,获得积分10
27秒前
看看发布了新的文献求助10
28秒前
Hello应助111采纳,获得10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756673
求助须知:如何正确求助?哪些是违规求助? 3300088
关于积分的说明 10112156
捐赠科研通 3014490
什么是DOI,文献DOI怎么找? 1655582
邀请新用户注册赠送积分活动 790016
科研通“疑难数据库(出版商)”最低求助积分说明 753546