Fairness-Aware Client Selection for Federated Learning

计算机科学 声誉 选择(遗传算法) 联合学习 光学(聚焦) 选择算法 机器学习 人工智能 社会科学 物理 社会学 光学
作者
Yuxin Shi,Zelei Liu,Zhuan Shi,Han Yu
标识
DOI:10.1109/icme55011.2023.00063
摘要

Federated learning (FL) has enabled multiple data owners (a.k.a. FL clients) to train machine learning models collaboratively without revealing private data. Since the FL server can only engage a limited number of clients in each training round, FL client selection has become an important research problem. Existing approaches generally focus on either enhancing FL model performance or enhancing the fair treatment of FL clients. The problem of balancing performance and fairness considerations when selecting FL clients remains open. To address this problem, we propose the Fairness-aware Federated Client Selection (FairFedCS) approach. Based on Lyapunov optimization, it dynamically adjusts FL clients' selection probabilities by jointly considering their reputations, times of participation in FL tasks and contributions to the resulting model performance. By not using threshold-based reputation filtering, it provides FL clients with opportunities to redeem their reputations after a perceived poor performance, thereby further enhancing fair client treatment. Extensive experiments based on real-world multimedia datasets show that FairFedCS achieves 19.6% higher fairness and 0.73% higher test accuracy on average than the best-performing state-of-the-art approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我不爱池鱼完成签到,获得积分0
1秒前
Joker完成签到,获得积分10
1秒前
橙子发布了新的文献求助10
2秒前
瘦瘦小萱完成签到,获得积分10
2秒前
zz完成签到,获得积分10
2秒前
3秒前
fff完成签到,获得积分10
3秒前
烟花应助感觉他香香的采纳,获得10
4秒前
4秒前
starry完成签到 ,获得积分10
5秒前
轻松的依萱完成签到,获得积分10
5秒前
zfy完成签到,获得积分10
5秒前
5秒前
JamesPei应助empty采纳,获得10
6秒前
7秒前
橙子完成签到,获得积分10
7秒前
7秒前
lshl2000完成签到,获得积分10
7秒前
希望天下0贩的0应助zyz采纳,获得10
8秒前
ChenLi完成签到,获得积分10
8秒前
AuCu发布了新的文献求助10
9秒前
不失眠元菱完成签到,获得积分10
9秒前
9秒前
mengdewen发布了新的文献求助50
10秒前
10秒前
11秒前
11秒前
11秒前
mhl11应助勤奋的若山采纳,获得20
12秒前
Jason.Z完成签到,获得积分10
12秒前
外向的含羞草完成签到,获得积分10
12秒前
wenze完成签到,获得积分10
13秒前
momo发布了新的文献求助30
13秒前
hhj02完成签到,获得积分20
13秒前
华仔应助123采纳,获得10
13秒前
淳于语海发布了新的文献求助10
13秒前
14秒前
Hello应助something0316采纳,获得10
14秒前
kqier完成签到,获得积分10
14秒前
热心不凡完成签到,获得积分10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304869
求助须知:如何正确求助?哪些是违规求助? 2938862
关于积分的说明 8490317
捐赠科研通 2613294
什么是DOI,文献DOI怎么找? 1427368
科研通“疑难数据库(出版商)”最低求助积分说明 662925
邀请新用户注册赠送积分活动 647561