亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recursive Bayesian Estimation for Discrete-Time Systems With State-Dependent Packet Dropouts: A Cross-Coupled Method

估计员 最大后验估计 最小均方误差 国家(计算机科学) 数学优化 数学 网络数据包 最优估计 均方误差 控制理论(社会学) 计算机科学 贝叶斯估计量 算法 统计 人工智能 最大似然 计算机网络 控制(管理)
作者
Qinyuan Liu,Zidong Wang,Hongli Dong,Changjun Jiang
出处
期刊:IEEE Transactions on Automatic Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tac.2023.3316989
摘要

In this paper, the recursive Bayesian estimation problem is investigated for a class of linear discrete-time systems subject to state-dependent packet dropouts.During the transmission to a remote estimator, the data packets carrying the local measurements might be dropped if the system state is located within certain occlusion region, and this gives rise to a nonstationary dropout process relying on real system states.In this scenario, due to the exponential growth of the computational cost, it is almost impossible to calculate the exact posterior distribution of the system state for the purpose of optimal state estimation.To address this issue, we propose a novel cross-coupled estimation framework consisting of two interactively working estimators, namely, a region-label estimator and a state estimator, where the former is utilized to obtain the optimal estimates of the regionlabel sequence in the maximum a posteriori sense, while the latter is adopted to achieve the optimal estimates of the system states in the minimum mean-square error sense.Moreover, a sufficient condition is obtained to ensure the mean-square boundedness of the resultant estimation error.The effectiveness of the proposed cross-coupled estimation framework is verified by a numerical simulation example.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
6秒前
CHAUSU完成签到,获得积分10
16秒前
旧月完成签到 ,获得积分10
25秒前
旧月关注了科研通微信公众号
31秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
willlee完成签到 ,获得积分10
1分钟前
1分钟前
LIJinlin完成签到,获得积分10
1分钟前
雪白傲薇完成签到 ,获得积分10
1分钟前
LIJinlin发布了新的文献求助10
1分钟前
扯扯完成签到,获得积分20
1分钟前
1分钟前
讨厌水煮蛋完成签到,获得积分10
1分钟前
1分钟前
1分钟前
扯扯发布了新的文献求助10
1分钟前
liuliu发布了新的文献求助10
1分钟前
讨厌水煮蛋发布了新的文献求助100
1分钟前
555完成签到,获得积分10
1分钟前
1分钟前
sera发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
老不靠谱发布了新的文献求助10
2分钟前
刘大宝发布了新的文献求助10
2分钟前
缪忆寒完成签到,获得积分10
2分钟前
充电宝应助刘大宝采纳,获得10
2分钟前
lovelife完成签到,获得积分10
2分钟前
sera完成签到 ,获得积分10
2分钟前
刘大宝完成签到,获得积分20
2分钟前
城。完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772837
求助须知:如何正确求助?哪些是违规求助? 5603302
关于积分的说明 15430141
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639601
邀请新用户注册赠送积分活动 1587507
关于科研通互助平台的介绍 1542432