Point-Based Learnable Query Generator for Human–Object Interaction Detection

计算机科学 分类器(UML) 目标检测 变压器 人工智能 最小边界框 模式识别(心理学) 跳跃式监视 特征提取 电压 图像(数学) 量子力学 物理
作者
Weihuan Lin,Hongbo Zhang,Zongwen Fan,Jinghua Liu,Lijie Yang,Qing Lei,Ji‐Xiang Du
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 6469-6484
标识
DOI:10.1109/tip.2023.3334100
摘要

Transformer-based and interaction point-based methods have demonstrated promising performance and potential in human-object interaction detection. However, due to differences in structure and properties, direct integration of these two types of models is not feasible. Recent Transformer-based methods divide the decoder into two branches: an instance decoder for human-object pair detection and a classification decoder for interaction recognition. While the attention mechanism within the Transformer enhances the connection between localization and classification, this paper focuses on further improving HOI detection performance by increasing the intrinsic correlation between instance and action features. To address these challenges, this paper proposes a novel Transformer-based HOI Detection framework. In the proposed method, the decoder contains three parts: learnable query generator, instance decoder, and interaction classifier. The learnable query generator aims to build an effective query to guide the instance decoder and interaction classifier to learn more accurate instance and interaction features. These features are then applied to update the query generator for the next layer. Especially, inspired by the interaction point-based HOI and object detection methods, this paper introduces the prior bounding boxes, keypoints detection and spatial relation feature to build the novel learnable query generator. Finally, the proposed method is verified on HICO-DET and V-COCO datasets. The experimental results show that the proposed method has the better performance compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴答滴发布了新的文献求助10
刚刚
1秒前
汤瀚文发布了新的文献求助10
1秒前
1秒前
火星上的手链完成签到,获得积分10
2秒前
Akim应助温暖金针菇采纳,获得10
3秒前
英俊的铭应助yummy采纳,获得10
4秒前
qianzheng应助含蓄的荔枝采纳,获得10
4秒前
呆呆发布了新的文献求助10
4秒前
changrao发布了新的文献求助20
5秒前
5秒前
5秒前
yhchow0204应助无感采纳,获得10
5秒前
阿白发布了新的文献求助10
6秒前
查丽发布了新的文献求助10
6秒前
cc发布了新的文献求助10
6秒前
Owen应助ccqy采纳,获得10
7秒前
7秒前
8秒前
8秒前
wanci应助adrift采纳,获得10
9秒前
9秒前
白日落西海完成签到,获得积分10
9秒前
hwtang发布了新的文献求助10
12秒前
13秒前
13秒前
Ploaris完成签到 ,获得积分10
13秒前
影子发布了新的文献求助10
14秒前
bkagyin应助白小白采纳,获得10
14秒前
14秒前
15秒前
乔Q完成签到,获得积分10
15秒前
老白发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
18秒前
小灿完成签到,获得积分10
18秒前
乔Q发布了新的文献求助10
18秒前
沙漠水发布了新的文献求助10
18秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218586
求助须知:如何正确求助?哪些是违规求助? 2867716
关于积分的说明 8157958
捐赠科研通 2534732
什么是DOI,文献DOI怎么找? 1367178
科研通“疑难数据库(出版商)”最低求助积分说明 644960
邀请新用户注册赠送积分活动 618144