已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Point-Based Learnable Query Generator for Human–Object Interaction Detection

计算机科学 分类器(UML) 目标检测 变压器 人工智能 最小边界框 模式识别(心理学) 跳跃式监视 特征提取 电压 图像(数学) 量子力学 物理
作者
Weihuan Lin,Hongbo Zhang,Zongwen Fan,Jinghua Liu,Lijie Yang,Qing Lei,Ji‐Xiang Du
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 6469-6484
标识
DOI:10.1109/tip.2023.3334100
摘要

Transformer-based and interaction point-based methods have demonstrated promising performance and potential in human-object interaction detection. However, due to differences in structure and properties, direct integration of these two types of models is not feasible. Recent Transformer-based methods divide the decoder into two branches: an instance decoder for human-object pair detection and a classification decoder for interaction recognition. While the attention mechanism within the Transformer enhances the connection between localization and classification, this paper focuses on further improving HOI detection performance by increasing the intrinsic correlation between instance and action features. To address these challenges, this paper proposes a novel Transformer-based HOI Detection framework. In the proposed method, the decoder contains three parts: learnable query generator, instance decoder, and interaction classifier. The learnable query generator aims to build an effective query to guide the instance decoder and interaction classifier to learn more accurate instance and interaction features. These features are then applied to update the query generator for the next layer. Especially, inspired by the interaction point-based HOI and object detection methods, this paper introduces the prior bounding boxes, keypoints detection and spatial relation feature to build the novel learnable query generator. Finally, the proposed method is verified on HICO-DET and V-COCO datasets. The experimental results show that the proposed method has the better performance compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
8秒前
8秒前
9秒前
11秒前
12秒前
朱金雨完成签到 ,获得积分10
12秒前
13秒前
囡囡发布了新的文献求助10
15秒前
15秒前
mxh发布了新的文献求助10
17秒前
17秒前
19秒前
CodeCraft应助瘦瘦大白采纳,获得10
20秒前
Ykaor完成签到 ,获得积分10
20秒前
21秒前
22秒前
22秒前
汉堡包应助伶俐的高烽采纳,获得10
23秒前
守护星星发布了新的文献求助10
25秒前
25秒前
天天快乐应助sci一点就通采纳,获得10
26秒前
27秒前
贪玩梦山发布了新的文献求助10
28秒前
30秒前
守护星星完成签到,获得积分10
32秒前
欢呼宛秋完成签到,获得积分10
33秒前
211JZH完成签到 ,获得积分10
33秒前
完美世界应助mxh采纳,获得10
34秒前
大龙完成签到 ,获得积分10
34秒前
月子淇应助霸气的金鱼采纳,获得10
36秒前
36秒前
1123完成签到 ,获得积分10
37秒前
37秒前
南寅完成签到,获得积分10
39秒前
heihei完成签到,获得积分10
39秒前
Cosmosurfer完成签到,获得积分10
39秒前
dida发布了新的文献求助10
40秒前
瘦瘦大白发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476217
求助须知:如何正确求助?哪些是违规求助? 4577883
关于积分的说明 14363077
捐赠科研通 4505789
什么是DOI,文献DOI怎么找? 2468870
邀请新用户注册赠送积分活动 1456491
关于科研通互助平台的介绍 1430126