Relational Consistency Induced Self-Supervised Hashing for Image Retrieval

汉明空间 计算机科学 散列函数 特征哈希 一致性(知识库) 特征(语言学) 模式识别(心理学) 哈希表 特征向量 成对比较 图像检索 局部敏感散列 汉明距离 人工智能 匹配(统计) 数据挖掘 汉明码 图像(数学) 数学 双重哈希 算法 哲学 区块代码 统计 解码方法 语言学 计算机安全
作者
Lu Jin,Zechao Li,Yonghua Pan,Jinhui Tang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (1): 1482-1494 被引量:6
标识
DOI:10.1109/tnnls.2023.3333294
摘要

This article proposes a new hashing framework named relational consistency induced self-supervised hashing (RCSH) for large-scale image retrieval. To capture the potential semantic structure of data, RCSH explores the relational consistency between data samples in different spaces, which learns reliable data relationships in the latent feature space and then preserves the learned relationships in the Hamming space. The data relationships are uncovered by learning a set of prototypes that group similar data samples in the latent feature space. By uncovering the semantic structure of the data, meaningful data-to-prototype and data-to-data relationships are jointly constructed. The data-to-prototype relationships are captured by constraining the prototype assignments generated from different augmented views of an image to be the same. Meanwhile, these data-to-prototype relationships are preserved to learn informative compact hash codes by matching them with these reliable prototypes. To accomplish this, a novel dual prototype contrastive loss is proposed to maximize the agreement of prototype assignments in the latent feature space and Hamming space. The data-to-data relationships are captured by enforcing the distribution of pairwise similarities in the latent feature space and Hamming space to be consistent, which makes the learned hash codes preserve meaningful similarity relationships. Extensive experimental results on four widely used image retrieval datasets demonstrate that the proposed method significantly outperforms the state-of-the-art methods. Besides, the proposed method achieves promising performance in out-of-domain retrieval tasks, which shows its good generalization ability. The source code and models are available at https://github.com/IMAG-LuJin/RCSH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yonica完成签到,获得积分10
3秒前
橙子完成签到,获得积分10
3秒前
Gaojinyun完成签到,获得积分10
3秒前
gf完成签到,获得积分10
3秒前
谨慎的尔白完成签到,获得积分10
4秒前
王十三完成签到 ,获得积分10
5秒前
7秒前
9秒前
科研通AI6应助研友_LmAWYL采纳,获得10
9秒前
研友_VZG7GZ应助刘歌采纳,获得10
10秒前
yidi01完成签到,获得积分10
10秒前
11秒前
11秒前
此木本去一应助欣欣子采纳,获得10
12秒前
要减肥小夏完成签到 ,获得积分10
12秒前
高挑的雁风完成签到,获得积分10
13秒前
emanon发布了新的文献求助10
13秒前
唐星煜完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
xiaozy完成签到,获得积分10
15秒前
Stanley发布了新的文献求助10
16秒前
无机盐完成签到,获得积分10
16秒前
尘封雪完成签到,获得积分10
17秒前
17秒前
wtian1221应助Lynth_雪鸮采纳,获得10
17秒前
萝卜完成签到,获得积分10
17秒前
rafaam完成签到,获得积分10
18秒前
Jiaaaa完成签到,获得积分20
19秒前
19秒前
抱抱龙完成签到 ,获得积分10
21秒前
云墨完成签到 ,获得积分10
21秒前
22秒前
刘歌发布了新的文献求助10
22秒前
Stanley完成签到,获得积分20
23秒前
23秒前
YANICE发布了新的文献求助10
23秒前
23秒前
款款发布了新的文献求助10
24秒前
情怀应助emanon采纳,获得10
24秒前
吴筮完成签到,获得积分10
25秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715