Relational Consistency Induced Self-Supervised Hashing for Image Retrieval

汉明空间 计算机科学 散列函数 特征哈希 一致性(知识库) 特征(语言学) 模式识别(心理学) 哈希表 特征向量 成对比较 图像检索 局部敏感散列 汉明距离 人工智能 匹配(统计) 数据挖掘 汉明码 图像(数学) 数学 双重哈希 算法 语言学 哲学 解码方法 统计 计算机安全 区块代码
作者
Lu Jin,Zechao Li,Yonghua Pan,Jinhui Tang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (1): 1482-1494 被引量:6
标识
DOI:10.1109/tnnls.2023.3333294
摘要

This article proposes a new hashing framework named relational consistency induced self-supervised hashing (RCSH) for large-scale image retrieval. To capture the potential semantic structure of data, RCSH explores the relational consistency between data samples in different spaces, which learns reliable data relationships in the latent feature space and then preserves the learned relationships in the Hamming space. The data relationships are uncovered by learning a set of prototypes that group similar data samples in the latent feature space. By uncovering the semantic structure of the data, meaningful data-to-prototype and data-to-data relationships are jointly constructed. The data-to-prototype relationships are captured by constraining the prototype assignments generated from different augmented views of an image to be the same. Meanwhile, these data-to-prototype relationships are preserved to learn informative compact hash codes by matching them with these reliable prototypes. To accomplish this, a novel dual prototype contrastive loss is proposed to maximize the agreement of prototype assignments in the latent feature space and Hamming space. The data-to-data relationships are captured by enforcing the distribution of pairwise similarities in the latent feature space and Hamming space to be consistent, which makes the learned hash codes preserve meaningful similarity relationships. Extensive experimental results on four widely used image retrieval datasets demonstrate that the proposed method significantly outperforms the state-of-the-art methods. Besides, the proposed method achieves promising performance in out-of-domain retrieval tasks, which shows its good generalization ability. The source code and models are available at https://github.com/IMAG-LuJin/RCSH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蓝冰发布了新的文献求助10
2秒前
3秒前
肉鸡应助屁特采纳,获得10
4秒前
小李完成签到,获得积分10
5秒前
长得像杨蕃应助wang采纳,获得10
5秒前
李浩宇完成签到,获得积分10
6秒前
wulala发布了新的文献求助10
6秒前
7秒前
siyuan完成签到,获得积分10
7秒前
加百莉发布了新的文献求助10
8秒前
浮游应助yaya采纳,获得10
9秒前
热心树叶应助JY采纳,获得30
9秒前
evina发布了新的文献求助10
9秒前
yangyang发布了新的文献求助200
9秒前
里里完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
11秒前
12秒前
12秒前
可可完成签到 ,获得积分10
13秒前
科研通AI2S应助affff采纳,获得10
13秒前
14秒前
Ayaka完成签到,获得积分10
14秒前
14秒前
热情盼柳完成签到,获得积分10
15秒前
香蕉觅云应助少年游采纳,获得10
15秒前
蓝天发布了新的文献求助10
15秒前
15秒前
sakuraai发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
17秒前
汏流萤发布了新的文献求助10
17秒前
核桃发布了新的文献求助10
18秒前
人机9527发布了新的文献求助10
18秒前
乐乐应助研友_LX01RL采纳,获得20
18秒前
远山发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577902
求助须知:如何正确求助?哪些是违规求助? 4662960
关于积分的说明 14743852
捐赠科研通 4603592
什么是DOI,文献DOI怎么找? 2526534
邀请新用户注册赠送积分活动 1496172
关于科研通互助平台的介绍 1465642