Relational Consistency Induced Self-Supervised Hashing for Image Retrieval

汉明空间 计算机科学 散列函数 特征哈希 一致性(知识库) 特征(语言学) 模式识别(心理学) 哈希表 特征向量 成对比较 图像检索 局部敏感散列 汉明距离 人工智能 匹配(统计) 数据挖掘 汉明码 图像(数学) 数学 双重哈希 算法 语言学 哲学 解码方法 统计 计算机安全 区块代码
作者
Lu Jin,Zechao Li,Yonghua Pan,Jinhui Tang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (1): 1482-1494 被引量:5
标识
DOI:10.1109/tnnls.2023.3333294
摘要

This article proposes a new hashing framework named relational consistency induced self-supervised hashing (RCSH) for large-scale image retrieval. To capture the potential semantic structure of data, RCSH explores the relational consistency between data samples in different spaces, which learns reliable data relationships in the latent feature space and then preserves the learned relationships in the Hamming space. The data relationships are uncovered by learning a set of prototypes that group similar data samples in the latent feature space. By uncovering the semantic structure of the data, meaningful data-to-prototype and data-to-data relationships are jointly constructed. The data-to-prototype relationships are captured by constraining the prototype assignments generated from different augmented views of an image to be the same. Meanwhile, these data-to-prototype relationships are preserved to learn informative compact hash codes by matching them with these reliable prototypes. To accomplish this, a novel dual prototype contrastive loss is proposed to maximize the agreement of prototype assignments in the latent feature space and Hamming space. The data-to-data relationships are captured by enforcing the distribution of pairwise similarities in the latent feature space and Hamming space to be consistent, which makes the learned hash codes preserve meaningful similarity relationships. Extensive experimental results on four widely used image retrieval datasets demonstrate that the proposed method significantly outperforms the state-of-the-art methods. Besides, the proposed method achieves promising performance in out-of-domain retrieval tasks, which shows its good generalization ability. The source code and models are available at https://github.com/IMAG-LuJin/RCSH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫的安雁完成签到 ,获得积分10
刚刚
1秒前
LAN0528完成签到,获得积分10
2秒前
笃定发布了新的文献求助10
2秒前
zcl应助温暖的雨旋采纳,获得100
3秒前
6692067发布了新的文献求助10
3秒前
4秒前
木木完成签到,获得积分20
4秒前
叁壹粑粑发布了新的文献求助30
5秒前
学术蛔虫完成签到 ,获得积分10
6秒前
Olsters完成签到,获得积分10
7秒前
123321完成签到,获得积分10
7秒前
7秒前
笃定完成签到,获得积分10
9秒前
桐桐应助XTQ采纳,获得10
9秒前
6692067完成签到,获得积分10
10秒前
大王叫我来巡山完成签到,获得积分10
11秒前
11秒前
12秒前
平常紫安完成签到 ,获得积分10
13秒前
mr_beard完成签到 ,获得积分10
15秒前
15秒前
李白发布了新的文献求助10
16秒前
一一完成签到,获得积分10
17秒前
科研通AI6应助Julie采纳,获得30
18秒前
18秒前
qrwyqjbsd应助洗刷刷采纳,获得10
18秒前
19秒前
amanda应助wgw采纳,获得20
20秒前
21秒前
NEXUS1604举报正宗求助涉嫌违规
22秒前
现代的擎苍完成签到,获得积分10
22秒前
23秒前
lijunlhc完成签到,获得积分10
23秒前
只昂张关注了科研通微信公众号
23秒前
爆炸boom完成签到 ,获得积分10
24秒前
研究生end发布了新的文献求助20
24秒前
华仔完成签到,获得积分10
24秒前
25秒前
科研通AI6应助Yanping采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429