Relational Consistency Induced Self-Supervised Hashing for Image Retrieval

汉明空间 计算机科学 散列函数 特征哈希 一致性(知识库) 特征(语言学) 模式识别(心理学) 哈希表 特征向量 成对比较 图像检索 局部敏感散列 汉明距离 人工智能 匹配(统计) 数据挖掘 汉明码 图像(数学) 数学 双重哈希 算法 语言学 哲学 解码方法 统计 计算机安全 区块代码
作者
Lu Jin,Zechao Li,Yonghua Pan,Jinhui Tang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:3
标识
DOI:10.1109/tnnls.2023.3333294
摘要

This article proposes a new hashing framework named relational consistency induced self-supervised hashing (RCSH) for large-scale image retrieval. To capture the potential semantic structure of data, RCSH explores the relational consistency between data samples in different spaces, which learns reliable data relationships in the latent feature space and then preserves the learned relationships in the Hamming space. The data relationships are uncovered by learning a set of prototypes that group similar data samples in the latent feature space. By uncovering the semantic structure of the data, meaningful data-to-prototype and data-to-data relationships are jointly constructed. The data-to-prototype relationships are captured by constraining the prototype assignments generated from different augmented views of an image to be the same. Meanwhile, these data-to-prototype relationships are preserved to learn informative compact hash codes by matching them with these reliable prototypes. To accomplish this, a novel dual prototype contrastive loss is proposed to maximize the agreement of prototype assignments in the latent feature space and Hamming space. The data-to-data relationships are captured by enforcing the distribution of pairwise similarities in the latent feature space and Hamming space to be consistent, which makes the learned hash codes preserve meaningful similarity relationships. Extensive experimental results on four widely used image retrieval datasets demonstrate that the proposed method significantly outperforms the state-of-the-art methods. Besides, the proposed method achieves promising performance in out-of-domain retrieval tasks, which shows its good generalization ability. The source code and models are available at https://github.com/IMAG-LuJin/RCSH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助疯狂的麦咭采纳,获得10
刚刚
田様应助小小怪下士采纳,获得10
刚刚
刚刚
动人的雁枫完成签到 ,获得积分10
刚刚
情怀应助Christine采纳,获得30
2秒前
3秒前
nbing完成签到,获得积分10
3秒前
动人的雁枫关注了科研通微信公众号
4秒前
geoyuan完成签到,获得积分10
4秒前
4秒前
4秒前
PANGDA完成签到 ,获得积分10
5秒前
贾翔发布了新的文献求助10
5秒前
6秒前
小明明应助Master_Ye采纳,获得10
6秒前
英俊的铭应助可不采纳,获得10
7秒前
Garfield完成签到,获得积分10
7秒前
无聊的翠芙完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
可乐清欢发布了新的文献求助10
8秒前
tangaohao_123456完成签到,获得积分10
8秒前
9秒前
9秒前
机灵水卉发布了新的文献求助10
9秒前
DARKNESS发布了新的文献求助10
10秒前
10秒前
搜集达人应助qyj采纳,获得10
10秒前
透明人发布了新的文献求助50
10秒前
10秒前
pluto应助紫罗兰花海采纳,获得10
10秒前
乔乔兔发布了新的文献求助10
11秒前
11秒前
司徒水绿完成签到 ,获得积分10
12秒前
13秒前
13秒前
Carlnye完成签到 ,获得积分20
13秒前
14秒前
orixero应助shenzhou9采纳,获得10
14秒前
14秒前
王小橘完成签到,获得积分10
14秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646