Radar specific emitter identification via the Attention-GRU model

雷达 计算机科学 算法 鉴定(生物学) 调制(音乐) 人工智能 模式识别(心理学) 电信 植物 生物 美学 哲学
作者
Wenxu Zhang,F. S. Zhang,Zhongkai Zhao,Feiran Liu
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:142: 104198-104198
标识
DOI:10.1016/j.dsp.2023.104198
摘要

In radar specific emitter identification (SEI), various types of unintentional modulation on pulse (UMOP) are selected as the features for discriminating between different radars. Unintentional Phase Modulation on Pulse (UPMOP), a typical type of UMOP, can provide crucial information for identifying radars. In most radar SEI algorithms, sacrificing time efficiency for higher accuracy is a common trade-off. This paper proposes a method to solve this problem by combining denoised UPMOP sequences with an Attention-based Gated Recurrent Units (Attention-GRU) model, which showed an excellent performance. Firstly, the cause of UPMOP is analyzed and the phase observation model of radar emitter signals and mathematical model of UPMOP are given. Then, the least-squares method is used to eliminate the linear trend of the phase observation model and obtain a noised estimation of the UPMOP sequences. Thirdly, the uniform B-spline (UBS) curves are then used to fit the noised estimation, resulting in a denoised and refined UPMOP sequence. Finally, the Attention-GRU model is employed to extract features from the denoised UPMOP sequences to identify radar emitters automatically. Results from simulation and measured data experiments show that the overall recognition rate of the algorithm reaches over 93% and the algorithm has excellent performance, with high identification accuracy and relatively low time consumption, even in low signal-to-noise ratio (SNR) conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
October完成签到 ,获得积分10
1秒前
1秒前
BouncyTree发布了新的文献求助10
3秒前
hylqj123发布了新的文献求助10
3秒前
林间发布了新的文献求助10
4秒前
4秒前
Twonej应助沧笙踏歌采纳,获得50
4秒前
轻松钢铁侠完成签到,获得积分10
4秒前
zhangyi发布了新的文献求助10
5秒前
5秒前
情怀应助岚风采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
嘟嘟嘟完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
领导范儿应助木木采纳,获得10
9秒前
林间完成签到,获得积分10
9秒前
Gjjjjjjj完成签到,获得积分20
10秒前
10秒前
搜集达人应助ZZZ采纳,获得10
10秒前
科研通AI6.1应助Royalll采纳,获得10
10秒前
10秒前
10秒前
伶俐的冬易完成签到,获得积分10
11秒前
蓝天应助时尚冬亦采纳,获得10
11秒前
Ripples完成签到,获得积分10
12秒前
12秒前
阿紫发布了新的文献求助10
12秒前
汉堡包应助siina采纳,获得10
12秒前
777发布了新的文献求助10
12秒前
sinlar发布了新的文献求助10
13秒前
华仔应助朴实的南露采纳,获得10
13秒前
wuww完成签到,获得积分20
13秒前
13秒前
骑帅骑不快完成签到,获得积分10
13秒前
14秒前
summing发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106