Radar specific emitter identification via the Attention-GRU model

雷达 计算机科学 算法 鉴定(生物学) 调制(音乐) 人工智能 模式识别(心理学) 电信 植物 生物 美学 哲学
作者
Wenxu Zhang,F. S. Zhang,Zhongkai Zhao,Feiran Liu
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:142: 104198-104198
标识
DOI:10.1016/j.dsp.2023.104198
摘要

In radar specific emitter identification (SEI), various types of unintentional modulation on pulse (UMOP) are selected as the features for discriminating between different radars. Unintentional Phase Modulation on Pulse (UPMOP), a typical type of UMOP, can provide crucial information for identifying radars. In most radar SEI algorithms, sacrificing time efficiency for higher accuracy is a common trade-off. This paper proposes a method to solve this problem by combining denoised UPMOP sequences with an Attention-based Gated Recurrent Units (Attention-GRU) model, which showed an excellent performance. Firstly, the cause of UPMOP is analyzed and the phase observation model of radar emitter signals and mathematical model of UPMOP are given. Then, the least-squares method is used to eliminate the linear trend of the phase observation model and obtain a noised estimation of the UPMOP sequences. Thirdly, the uniform B-spline (UBS) curves are then used to fit the noised estimation, resulting in a denoised and refined UPMOP sequence. Finally, the Attention-GRU model is employed to extract features from the denoised UPMOP sequences to identify radar emitters automatically. Results from simulation and measured data experiments show that the overall recognition rate of the algorithm reaches over 93% and the algorithm has excellent performance, with high identification accuracy and relatively low time consumption, even in low signal-to-noise ratio (SNR) conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
和谐青柏应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
280应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
方方土应助科研通管家采纳,获得10
2秒前
和谐青柏应助科研通管家采纳,获得10
2秒前
wlingke应助科研通管家采纳,获得30
2秒前
2秒前
小白应助科研通管家采纳,获得10
2秒前
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
科目三应助科研通管家采纳,获得10
3秒前
3秒前
瘦瘦的师应助科研通管家采纳,获得10
3秒前
向浩发布了新的文献求助10
3秒前
chiu_yy完成签到,获得积分20
4秒前
ZXK完成签到 ,获得积分10
4秒前
wuxian发布了新的文献求助10
4秒前
神勇寒天完成签到 ,获得积分10
4秒前
shdheud完成签到,获得积分10
5秒前
优雅丹蝶发布了新的文献求助10
5秒前
爆米花应助守墓人采纳,获得10
6秒前
JamesPei应助711采纳,获得10
6秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632327
求助须知:如何正确求助?哪些是违规求助? 4726681
关于积分的说明 14981762
捐赠科研通 4790262
什么是DOI,文献DOI怎么找? 2558238
邀请新用户注册赠送积分活动 1518646
关于科研通互助平台的介绍 1479089