聚山梨酯
化学
肺表面活性物质
色谱法
水解
酶水解
聚乙烯醇
降级(电信)
有机化学
化学工程
生物化学
计算机科学
电信
工程类
作者
Nils Glücklich,Stefan Carle,Tim Diederichs,Julia Buske,Karsten Mäder,Patrick Garidel
标识
DOI:10.1016/j.ejps.2023.106597
摘要
Polysorbates (PS) are esters of ethoxylated sorbitol anhydrides of different composition and are widely used surfactants in biologics. PSs are applied to increase protein stability and concomitant shelf-life via shielding against e.g., interfacial stresses. Due to the presence of specific lipolytic host cell protein (HCP) contaminations in the drug substance, PSs can be degraded via enzymatic hydrolysis. Surfactant hydrolysis leads to the formation of degradants, such as free fatty acids that might form fatty acid particles. In addition, PS degradation may reduce surfactant functionality and thus reduce the protection of the active pharmaceutical ingredient (API). Although enzymatic degradation was observed and reported in the last years, less is known about the relationship between certain polysorbate degradation patterns and the increase of mechanical and interfacial stress towards the API. In this study, the impact of specifically hydrolyzed polysorbate 20 (PS20) towards the stabilization of two monoclonal antibodies (mAbs) during accelerated shaking stress conditions was investigated. The results show that a specific enzymatic degradation pattern of PS20 can influence the colloidal stability of biopharmaceutical formulations. Furthermore, the kinetics of the appearance of visual phenomena, opalescence, and particle formation depended on the polysorbate degradation fingerprint as induced via the presence of surrogate enzymes. The current case study shows the importance of focusing on specific polysorbate ester fractions to understand the overall colloidal protein stabilizing effect. The performed study gives first insight into the functional properties of PS and helps to evaluate the impact of PS degradation in the formulation development of biopharmaceuticals in general.
科研通智能强力驱动
Strongly Powered by AbleSci AI