已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-level deep domain adaptive adversarial model based on tensor-train decomposition for industrial time series forecasting

计算机科学 杠杆(统计) 时间序列 过程(计算) 人工神经网络 人工智能 机器学习 领域(数学分析) 数据挖掘 工业工程 工程类 数学分析 数学 操作系统
作者
Chen Yang,Chuang Peng,Lei Chen,Kuangrong Hao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025142-025142
标识
DOI:10.1088/1361-6501/ad0f0f
摘要

Abstract The polyester industry is a complex process industry, building a time series prediction model for new production lines or equipment with new sensors can be challenging due to a lack of historical data. The time-series data collected from sensors cross-production-line often exhibit varying distributions. Current domain adaptation (DA) approaches in data-driven time series forecasting primarily concentrate on adjusting either the features or the models, neglecting the intricacies of industrial time series data. Furthermore, constructing deep neural networks for industrial data necessitates substantial computational resources and runtime due to their large and high-dimensional nature. In order to tackle these obstacles, we propose a novel Multi-level deep domain adaptive adversarial model based on tensor-train decomposition (TT-MDAM). Our model aims to strike a dynamic balance between prediction accuracy and runtime efficiency. By integrating multiple perspectives at the feature, trend, and model levels, we leverage DA to enhance the prediction accuracy of our model in the target domain. Additionally, by analyzing the weight matrix of the neural network, we generate a low-rank model to improve operational efficiency. The application of the proposed TT-MDAM approach to both the three-phase flow facility process (TPFF) dataset and a real-world polyester esterification process dataset reveals promising results, outperforming state-of-the-art methodologies in terms of prediction performance. The results indicate that the approach provides a viable solution for building time series prediction models in industrial processes with new equipment or production lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文武兼备发布了新的文献求助10
1秒前
2秒前
完美世界应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
香芋应助科研通管家采纳,获得20
3秒前
Ava应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
4秒前
沉静一刀完成签到 ,获得积分10
7秒前
文武兼备完成签到,获得积分10
13秒前
lee完成签到,获得积分10
14秒前
酒醉的蝴蝶完成签到 ,获得积分10
16秒前
17秒前
21秒前
上官若男应助A3000采纳,获得10
22秒前
ccc完成签到 ,获得积分10
24秒前
hancahngxiao完成签到,获得积分20
25秒前
25秒前
Yuanyuan发布了新的文献求助10
26秒前
27秒前
31秒前
PIMES发布了新的文献求助10
31秒前
酷酷的乌冬面完成签到,获得积分10
33秒前
33秒前
山山而川发布了新的文献求助20
33秒前
34秒前
35秒前
35秒前
WUYONGSHUAI发布了新的文献求助10
36秒前
托尔斯泰发布了新的文献求助10
38秒前
A3000发布了新的文献求助10
38秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725129
求助须知:如何正确求助?哪些是违规求助? 3270246
关于积分的说明 9965146
捐赠科研通 2985203
什么是DOI,文献DOI怎么找? 1637795
邀请新用户注册赠送积分活动 777724
科研通“疑难数据库(出版商)”最低求助积分说明 747171