Multi-level deep domain adaptive adversarial model based on tensor-train decomposition for industrial time series forecasting

计算机科学 杠杆(统计) 时间序列 过程(计算) 人工神经网络 人工智能 机器学习 领域(数学分析) 数据挖掘 工业工程 工程类 数学分析 数学 操作系统
作者
Chen Yang,Chuang Peng,Lei Chen,Kuangrong Hao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025142-025142
标识
DOI:10.1088/1361-6501/ad0f0f
摘要

Abstract The polyester industry is a complex process industry, building a time series prediction model for new production lines or equipment with new sensors can be challenging due to a lack of historical data. The time-series data collected from sensors cross-production-line often exhibit varying distributions. Current domain adaptation (DA) approaches in data-driven time series forecasting primarily concentrate on adjusting either the features or the models, neglecting the intricacies of industrial time series data. Furthermore, constructing deep neural networks for industrial data necessitates substantial computational resources and runtime due to their large and high-dimensional nature. In order to tackle these obstacles, we propose a novel Multi-level deep domain adaptive adversarial model based on tensor-train decomposition (TT-MDAM). Our model aims to strike a dynamic balance between prediction accuracy and runtime efficiency. By integrating multiple perspectives at the feature, trend, and model levels, we leverage DA to enhance the prediction accuracy of our model in the target domain. Additionally, by analyzing the weight matrix of the neural network, we generate a low-rank model to improve operational efficiency. The application of the proposed TT-MDAM approach to both the three-phase flow facility process (TPFF) dataset and a real-world polyester esterification process dataset reveals promising results, outperforming state-of-the-art methodologies in terms of prediction performance. The results indicate that the approach provides a viable solution for building time series prediction models in industrial processes with new equipment or production lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王京华完成签到,获得积分10
1秒前
赘婿应助花开富贵采纳,获得10
2秒前
2秒前
前进中完成签到,获得积分10
3秒前
3秒前
鸣笛应助zizi采纳,获得30
5秒前
daying完成签到,获得积分10
6秒前
Judy完成签到 ,获得积分0
6秒前
11发布了新的文献求助10
7秒前
zzz完成签到,获得积分10
7秒前
超帅的又槐完成签到,获得积分10
7秒前
四夕完成签到 ,获得积分10
8秒前
9秒前
完美天蓝完成签到 ,获得积分10
10秒前
halo完成签到,获得积分10
11秒前
爱笑子默完成签到 ,获得积分10
11秒前
情怀应助晚晚采纳,获得10
12秒前
gy发布了新的文献求助10
12秒前
11完成签到,获得积分10
13秒前
fanzi完成签到 ,获得积分10
13秒前
自信的天蓝完成签到,获得积分20
15秒前
aaa完成签到,获得积分10
15秒前
maxyer完成签到,获得积分10
15秒前
LIN完成签到,获得积分10
16秒前
CDQ完成签到,获得积分10
16秒前
Singularity完成签到,获得积分0
16秒前
aaaaaa完成签到,获得积分10
18秒前
julian190完成签到,获得积分10
19秒前
Ran完成签到 ,获得积分10
19秒前
20秒前
20秒前
格子完成签到,获得积分10
21秒前
223311完成签到,获得积分10
21秒前
22秒前
yup发布了新的文献求助10
23秒前
短巷完成签到 ,获得积分10
24秒前
28秒前
栖木木完成签到 ,获得积分10
28秒前
su完成签到 ,获得积分10
29秒前
852应助heaven采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950009
求助须知:如何正确求助?哪些是违规求助? 3495337
关于积分的说明 11076302
捐赠科研通 3225863
什么是DOI,文献DOI怎么找? 1783324
邀请新用户注册赠送积分活动 867589
科研通“疑难数据库(出版商)”最低求助积分说明 800839