已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-level deep domain adaptive adversarial model based on tensor-train decomposition for industrial time series forecasting

计算机科学 杠杆(统计) 时间序列 过程(计算) 人工神经网络 人工智能 机器学习 领域(数学分析) 数据挖掘 工业工程 工程类 数学 操作系统 数学分析
作者
Chen Yang,Chuang Peng,Lei Chen,Kuangrong Hao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025142-025142
标识
DOI:10.1088/1361-6501/ad0f0f
摘要

Abstract The polyester industry is a complex process industry, building a time series prediction model for new production lines or equipment with new sensors can be challenging due to a lack of historical data. The time-series data collected from sensors cross-production-line often exhibit varying distributions. Current domain adaptation (DA) approaches in data-driven time series forecasting primarily concentrate on adjusting either the features or the models, neglecting the intricacies of industrial time series data. Furthermore, constructing deep neural networks for industrial data necessitates substantial computational resources and runtime due to their large and high-dimensional nature. In order to tackle these obstacles, we propose a novel Multi-level deep domain adaptive adversarial model based on tensor-train decomposition (TT-MDAM). Our model aims to strike a dynamic balance between prediction accuracy and runtime efficiency. By integrating multiple perspectives at the feature, trend, and model levels, we leverage DA to enhance the prediction accuracy of our model in the target domain. Additionally, by analyzing the weight matrix of the neural network, we generate a low-rank model to improve operational efficiency. The application of the proposed TT-MDAM approach to both the three-phase flow facility process (TPFF) dataset and a real-world polyester esterification process dataset reveals promising results, outperforming state-of-the-art methodologies in terms of prediction performance. The results indicate that the approach provides a viable solution for building time series prediction models in industrial processes with new equipment or production lines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀紫南完成签到 ,获得积分10
1秒前
3秒前
ZZZ发布了新的文献求助10
5秒前
Spine发布了新的文献求助10
6秒前
lu完成签到,获得积分10
11秒前
12秒前
Zwj发布了新的文献求助10
14秒前
YP完成签到,获得积分10
16秒前
17秒前
聆琳完成签到 ,获得积分10
19秒前
19秒前
力阿关注了科研通微信公众号
22秒前
田様应助缓慢的藏鸟采纳,获得10
23秒前
23秒前
Zwj完成签到,获得积分20
24秒前
29秒前
FashionBoy应助称心语风采纳,获得10
32秒前
36秒前
布洛芬完成签到,获得积分10
37秒前
scot完成签到,获得积分0
39秒前
41秒前
称心语风完成签到,获得积分20
42秒前
45秒前
称心语风发布了新的文献求助10
46秒前
wy.he应助guard采纳,获得10
46秒前
www完成签到 ,获得积分10
47秒前
Wsq完成签到,获得积分10
47秒前
50秒前
liu关注了科研通微信公众号
52秒前
科研通AI2S应助Spine采纳,获得10
56秒前
Mrshi发布了新的文献求助10
56秒前
57秒前
隐形曼青应助面条采纳,获得10
58秒前
1分钟前
东尧完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Lilxy完成签到,获得积分10
1分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085085
求助须知:如何正确求助?哪些是违规求助? 2738054
关于积分的说明 7548031
捐赠科研通 2387642
什么是DOI,文献DOI怎么找? 1266055
科研通“疑难数据库(出版商)”最低求助积分说明 613267
版权声明 598460