Construction of a 3D whole organism spatial atlas by joint modelling of multiple slices with deep neural networks

计算机科学 三维模型 有机体 空间分析 限制 人工智能 计算生物学 数据挖掘 生物 地理 遥感 机械工程 工程类 古生物学
作者
Gefei Wang,Jia Zhao,Yan Yan,Yang Wang,Angela Ruohao Wu,Can Yang
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (11): 1200-1213 被引量:58
标识
DOI:10.1038/s42256-023-00734-1
摘要

Spatial transcriptomics (ST) technologies are revolutionizing the way to explore the spatial architecture of tissues. Currently, ST data analysis is often restricted to a single two-dimensional (2D) tissue slice, limiting our capacity to understand biological processes that take place in 3D space. Here we present STitch3D, a unified framework that integrates multiple ST slices to reconstruct 3D cellular structures. By jointly modelling multiple slices and integrating them with single-cell RNA-sequencing data, STitch3D simultaneously identifies 3D spatial regions with coherent gene-expression levels and reveals 3D cell-type distributions. STitch3D distinguishes biological variation among slices from batch effects, and effectively borrows information across slices to assemble powerful 3D models. Through comprehensive experiments, we demonstrate STitch3D’s performance in building comprehensive 3D architectures, which allow 3D analysis in the entire tissue region or even the whole organism. The outputs of STitch3D can be used for multiple downstream tasks, enabling a comprehensive understanding of biological systems. Computational methods for analysing single 2D tissue slices from spatial transcriptomics studies are well established, but their extension to the 3D domain is challenging. Wang et al. develop a deep learning framework that can perform 3D reconstruction of cellular structures in tissues as well as whole organisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT完成签到 ,获得积分20
刚刚
隔壁海绵宝宝完成签到,获得积分10
刚刚
1640301090完成签到,获得积分10
刚刚
1秒前
十一发布了新的文献求助20
1秒前
玩命的小虾米完成签到,获得积分10
1秒前
不赖床的科研狗完成签到,获得积分10
1秒前
whatever应助加菲丰丰采纳,获得20
1秒前
HH完成签到 ,获得积分10
1秒前
哭泣海雪发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
星辰大海应助蚂蚁牙黑采纳,获得10
4秒前
5秒前
一树灯笼发布了新的文献求助10
5秒前
5秒前
smottom应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
haoduoyu完成签到 ,获得积分10
6秒前
smottom应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
大模型应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
bkagyin应助LLR采纳,获得10
6秒前
6秒前
ccc发布了新的文献求助10
6秒前
7秒前
蓝天应助Fashioner8351采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785064
求助须知:如何正确求助?哪些是违规求助? 5685309
关于积分的说明 15466430
捐赠科研通 4914115
什么是DOI,文献DOI怎么找? 2645093
邀请新用户注册赠送积分活动 1592886
关于科研通互助平台的介绍 1547281