清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Pitfalls in machine learning‐based assessment of tumor‐infiltrating lymphocytes in breast cancer: A report of the International Immuno‐Oncology Biomarker Working Group on Breast Cancer

肿瘤浸润淋巴细胞 乳腺癌 医学 三阴性乳腺癌 肿瘤科 生物标志物 癌症 临床试验 内科学 雌激素受体 孕酮受体 免疫疗法 生物化学 化学
作者
Jeppe Thagaard,Glenn Broeckx,David B. Page,Chowdhury Arif Jahangir,Sara Verbandt,Zuzana Kos,Rajarsi Gupta,Reena Khiroya,Khalid AbdulJabbar,Gabriela Acosta Haab,Balázs Ács,Guray Akturk,Jonas S. Almeida,Isabel Alvarado‐Cabrero,Mohamed Amgad,Farid Azmoudeh Ardalan,Sunil Badve,Nurkhairul Bariyah Baharun,Eva Balslev,Enrique Bellolio,Vydehi Bheemaraju,Kim RM Blenman,Luciana Botinelly Mendonça Fujimoto,Najat Bouchmaa,Octavio Burgues,Alexandros Hardas,Maggie C.U. Cheang,Francesco Ciompi,Lee Cooper,An Coosemans,Germán Corredor,Anders Bjorholm Dahl,Flávio Luis Dantas Portela,Frederik Deman,Sandra Demaria,Johan Doré Hansen,Sarah Dudgeon,Thomas Ebstrup,Mahmoud Elghazawy,Claudio Fernandez‐Martín,Stephen B. Fox,William M. Gallagher,Jennifer M. Giltnane,Sacha Gnjatic,Paula I. González-Ericsson,Anita Grigoriadis,Niels Halama,Matthew G Hanna,Aparna Harbhajanka,Steven N. Hart,Johan Hartman,Søren Hauberg,Stephen M. Hewitt,Akira I. Hida,Hugo M. Horlings,Zaheed Husain,Evangelos Hytopoulos,Sheeba Irshad,Emiel A. M. Janssen,Mohamed M. Kahila,Tatsuki R. Kataoka,Kosuke Kawaguchi,Durga Kharidehal,Andrey Khramtsov,Umay Kiraz,Pawan Kirtani,Liudmila L. Kodach,Konstanty Korski,Anikó Kovács,Anne‐Vibeke Lænkholm,Corinna Lang‐Schwarz,Denis Larsimont,Jochen K. Lennerz,Marvin Lerousseau,Xiaoxian Li,Amy Ly,Anant Madabhushi,Sai Maley,Vidya Manur Narasimhamurthy,Douglas K. Marks,Elizabeth S. McDonald,Ravi Mehrotra,Stefan Michiels,Fayyaz Minhas,Shachi Mittal,David A. Moore,Shamim Mushtaq,Nighat Hussain,Thomas Papathomas,Frédérique Penault‐Llorca,Rashindrie Perera,Christopher J. Pinard,Juan Carlos Pinto‐Cardenas,Giancarlo Pruneri,Lajos Pusztai,Arman Rahman,Nasir Rajpoot,Bernardo L. Rapoport,Tilman T. Rau,Jorge S. Reis‐Filho,Joana Ribeiro,David L. Rimm,Anne Roslind,Anne Vincent‐Salomon,Manuel Salto‐Tellez,Joel Saltz,Shahin Sayed,Ely Scott,Kalliopi P. Siziopikou,Christos Sotiriou,Albrecht Stenzinger,Maher A. Sughayer,Daniel Sur,Susan Fineberg,Fraser Symmans,Sunao Tanaka,Timothy Taxter,Sabine Tejpar,Jonas Teuwen,E. Aubrey Thompson,Trine Tramm,William T. Tran,Jeroen van der Laak,P. J. van Diest,Gregory Verghese,Giuseppe Viale,Michael Vieth,Noorul Wahab,Thomas Walter,Yannick Waumans,Hannah Y. Wen,Wentao Yang,Yinyin Yuan,Reena Md Zin,Sylvia Adams,John M.S. Bartlett,Sibylle Loibl,Carsten Denkert,Peter Savas,Sherene Loi,Roberto Salgado,Elisabeth Specht Stovgaard
标识
DOI:10.1002/path.6155
摘要

Abstract The clinical significance of the tumor‐immune interaction in breast cancer is now established, and tumor‐infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple‐negative (estrogen receptor, progesterone receptor, and HER2‐negative) breast cancer and HER2‐positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state‐of‐the‐art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false‐positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in‐depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple‐negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gxy完成签到,获得积分10
19秒前
Jankim完成签到 ,获得积分10
32秒前
佳里发布了新的文献求助10
32秒前
41秒前
tjxhtj完成签到,获得积分10
54秒前
等待的剑身完成签到,获得积分10
1分钟前
董世英完成签到,获得积分10
1分钟前
1分钟前
1分钟前
VPN不好用完成签到,获得积分10
2分钟前
美好灵寒完成签到 ,获得积分10
2分钟前
2分钟前
影像大侠完成签到,获得积分10
3分钟前
3分钟前
lilaccalla完成签到 ,获得积分10
3分钟前
ni完成签到,获得积分20
3分钟前
General完成签到 ,获得积分10
4分钟前
cdercder完成签到,获得积分10
4分钟前
4分钟前
无悔完成签到 ,获得积分10
4分钟前
zhdjj完成签到 ,获得积分10
4分钟前
Axs完成签到,获得积分10
5分钟前
淞淞于我完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
cc完成签到,获得积分10
5分钟前
luochen完成签到 ,获得积分10
5分钟前
白华苍松发布了新的文献求助20
6分钟前
6分钟前
铁妹儿完成签到 ,获得积分10
6分钟前
wodetaiyangLLL完成签到 ,获得积分10
6分钟前
一白完成签到 ,获得积分10
6分钟前
Polymer72应助北高为鳅采纳,获得10
6分钟前
jerry完成签到 ,获得积分10
6分钟前
小乙猪完成签到 ,获得积分0
7分钟前
老宇126发布了新的文献求助10
7分钟前
双眼皮跳蚤完成签到,获得积分10
7分钟前
英姑应助科研通管家采纳,获得10
7分钟前
天亮了吗完成签到,获得积分0
7分钟前
Di完成签到 ,获得积分10
7分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397933
求助须知:如何正确求助?哪些是违规求助? 3006935
关于积分的说明 8823585
捐赠科研通 2694290
什么是DOI,文献DOI怎么找? 1475840
科研通“疑难数据库(出版商)”最低求助积分说明 682519
邀请新用户注册赠送积分活动 675950