Improved Robot Path Planning Method Based on Deep Reinforcement Learning

强化学习 计算机科学 人工智能 运动规划 路径(计算) 趋同(经济学) 避障 理论(学习稳定性) 机器人学 机器学习 机器人 数学优化 移动机器人 数学 经济增长 经济 程序设计语言
作者
Huiyan Han,Jiaqi Wang,Liqun Kuang,Xie Han,Hongxin Xue
出处
期刊:Sensors [MDPI AG]
卷期号:23 (12): 5622-5622
标识
DOI:10.3390/s23125622
摘要

With the advancement of robotics, the field of path planning is currently experiencing a period of prosperity. Researchers strive to address this nonlinear problem and have achieved remarkable results through the implementation of the Deep Reinforcement Learning (DRL) algorithm DQN (Deep Q-Network). However, persistent challenges remain, including the curse of dimensionality, difficulties of model convergence and sparsity in rewards. To tackle these problems, this paper proposes an enhanced DDQN (Double DQN) path planning approach, in which the information after dimensionality reduction is fed into a two-branch network that incorporates expert knowledge and an optimized reward function to guide the training process. The data generated during the training phase are initially discretized into corresponding low-dimensional spaces. An “expert experience” module is introduced to facilitate the model’s early-stage training acceleration in the Epsilon–Greedy algorithm. To tackle navigation and obstacle avoidance separately, a dual-branch network structure is presented. We further optimize the reward function enabling intelligent agents to receive prompt feedback from the environment after performing each action. Experiments conducted in both virtual and real-world environments have demonstrated that the enhanced algorithm can accelerate model convergence, improve training stability and generate a smooth, shorter and collision-free path.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷炫怀莲完成签到,获得积分10
1秒前
ztt完成签到,获得积分10
1秒前
希望天下0贩的0应助Felix采纳,获得30
2秒前
共享精神应助yyhatb采纳,获得10
3秒前
赘婿应助研友_89eAm8采纳,获得10
3秒前
奋斗的桐发布了新的文献求助10
3秒前
4秒前
皇帝的床帘应助宓函采纳,获得10
5秒前
Sun发布了新的文献求助20
5秒前
6秒前
典雅涵瑶发布了新的文献求助10
6秒前
yee发布了新的文献求助10
6秒前
笑点低的幼翠完成签到,获得积分10
6秒前
6秒前
sanxing发布了新的文献求助10
7秒前
淡定落雁发布了新的文献求助30
8秒前
8秒前
fifteen发布了新的文献求助10
9秒前
10秒前
东擎完成签到 ,获得积分10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
甜甜玫瑰应助科研通管家采纳,获得10
10秒前
11秒前
大个应助科研通管家采纳,获得10
11秒前
牛牛牛应助科研通管家采纳,获得20
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
若E18应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
tkdzjr12345发布了新的文献求助10
11秒前
今后应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
甜甜玫瑰应助科研通管家采纳,获得10
11秒前
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
11秒前
shanage应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163383
求助须知:如何正确求助?哪些是违规求助? 2814219
关于积分的说明 7903906
捐赠科研通 2473789
什么是DOI,文献DOI怎么找? 1317077
科研通“疑难数据库(出版商)”最低求助积分说明 631615
版权声明 602187