Improved Robot Path Planning Method Based on Deep Reinforcement Learning

强化学习 计算机科学 人工智能 运动规划 路径(计算) 趋同(经济学) 避障 理论(学习稳定性) 机器人学 机器学习 机器人 数学优化 移动机器人 数学 经济增长 经济 程序设计语言
作者
Huiyan Han,Jiaqi Wang,Liqun Kuang,Xie Han,Hongxin Xue
出处
期刊:Sensors [MDPI AG]
卷期号:23 (12): 5622-5622 被引量:14
标识
DOI:10.3390/s23125622
摘要

With the advancement of robotics, the field of path planning is currently experiencing a period of prosperity. Researchers strive to address this nonlinear problem and have achieved remarkable results through the implementation of the Deep Reinforcement Learning (DRL) algorithm DQN (Deep Q-Network). However, persistent challenges remain, including the curse of dimensionality, difficulties of model convergence and sparsity in rewards. To tackle these problems, this paper proposes an enhanced DDQN (Double DQN) path planning approach, in which the information after dimensionality reduction is fed into a two-branch network that incorporates expert knowledge and an optimized reward function to guide the training process. The data generated during the training phase are initially discretized into corresponding low-dimensional spaces. An “expert experience” module is introduced to facilitate the model’s early-stage training acceleration in the Epsilon–Greedy algorithm. To tackle navigation and obstacle avoidance separately, a dual-branch network structure is presented. We further optimize the reward function enabling intelligent agents to receive prompt feedback from the environment after performing each action. Experiments conducted in both virtual and real-world environments have demonstrated that the enhanced algorithm can accelerate model convergence, improve training stability and generate a smooth, shorter and collision-free path.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
果称完成签到,获得积分10
1秒前
酷波er应助爱听歌的复天采纳,获得10
1秒前
刘松完成签到,获得积分10
1秒前
小蘑菇应助Vir采纳,获得10
1秒前
shkknx完成签到,获得积分10
2秒前
2秒前
2秒前
向日葵完成签到,获得积分10
2秒前
无极微光应助yingluo采纳,获得20
2秒前
简单宝莹完成签到,获得积分10
3秒前
太叔笑萍发布了新的文献求助10
3秒前
春夏秋冬发布了新的文献求助10
3秒前
PDA完成签到,获得积分10
3秒前
nssm发布了新的文献求助10
3秒前
3秒前
山语完成签到,获得积分10
3秒前
3秒前
科研通AI6应助细心幻香采纳,获得10
3秒前
LewisAcid应助细心幻香采纳,获得10
4秒前
Petrichor发布了新的文献求助10
4秒前
4秒前
充电宝应助开朗指甲油采纳,获得30
5秒前
宓天问完成签到,获得积分10
5秒前
5秒前
耿耿于怀完成签到,获得积分10
5秒前
wenchong完成签到,获得积分10
5秒前
LewisAcid应助杨一乐采纳,获得10
5秒前
5秒前
刘松发布了新的文献求助10
5秒前
奶昔发布了新的文献求助10
6秒前
烟花应助光亮灯泡采纳,获得10
6秒前
6秒前
qingyu_Lin123完成签到,获得积分20
6秒前
David完成签到,获得积分10
7秒前
全球完成签到,获得积分20
7秒前
33完成签到 ,获得积分10
7秒前
7秒前
刘思彤发布了新的文献求助10
7秒前
英吉利25发布了新的文献求助10
8秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585741
求助须知:如何正确求助?哪些是违规求助? 4669361
关于积分的说明 14776911
捐赠科研通 4618356
什么是DOI,文献DOI怎么找? 2530650
邀请新用户注册赠送积分活动 1499380
关于科研通互助平台的介绍 1467750