Accuracy and clinical validity of automated cephalometric analysis using convolutional neural networks

地标 头影测量分析 口腔正畸科 头影测量 射线照相术 卷积神经网络 人工智能 数学 医学 计算机科学 放射科
作者
S B Kang,In-Hwan Kim,Yoon‐Ji Kim,Namkug Kim,Seung‐Hak Baek,Sang‐Jin Sung
出处
期刊:Orthodontics & Craniofacial Research [Wiley]
卷期号:27 (1): 64-77 被引量:6
标识
DOI:10.1111/ocr.12683
摘要

Abstract Background This study aimed to assess the error range of cephalometric measurements based on the landmarks detected using cascaded CNNs and determine how horizontal and vertical positional errors of individual landmarks affect lateral cephalometric measurements. Methods In total, 120 lateral cephalograms were obtained consecutively from patients (mean age, 32.5 ± 11.6) who visited the Asan Medical Center, Seoul, Korea, for orthodontic treatment between 2019 and 2021. An automated lateral cephalometric analysis model previously developed from a nationwide multi‐centre database was used to digitize the lateral cephalograms. The horizontal and vertical landmark position error attributable to the AI model was defined as the distance between the landmark identified by the human and that identified by the AI model on the x‐ and y‐axes. The differences between the cephalometric measurements based on the landmarks identified by the AI model vs those identified by the human examiner were assessed. The association between the lateral cephalometric measurements and the positioning errors in the landmarks comprising the cephalometric measurement was assessed. Results The mean difference in the angular and linear measurements based on AI vs human landmark localization was .99 ± 1.05°, and .80 ± .82 mm, respectively. Significant differences between the measurements derived from AI‐based and human localization were observed for all cephalometric variables except SNA, pog‐Nperp, facial angle, SN‐GoGn, FMA, Bjork sum, U1‐SN, U1‐FH, IMPA, L1‐NB (angular) and interincisal angle. Conclusions The errors in landmark positions, especially those that define reference planes, may significantly affect cephalometric measurements. The possibility of errors generated by automated lateral cephalometric analysis systems should be considered when using such systems for orthodontic diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
周立成完成签到,获得积分10
2秒前
思源应助jinjin采纳,获得10
4秒前
6秒前
6秒前
10秒前
Owen应助wang_qi采纳,获得10
12秒前
所所应助Rick采纳,获得10
15秒前
15秒前
彳亍发布了新的文献求助10
15秒前
21秒前
21秒前
醉熏的鑫发布了新的文献求助10
24秒前
梁子奥里给完成签到,获得积分10
24秒前
jingxian发布了新的文献求助10
26秒前
wen_xxx发布了新的文献求助10
26秒前
无私追命发布了新的文献求助10
34秒前
35秒前
传奇3应助domingo采纳,获得10
36秒前
Jupiter关注了科研通微信公众号
36秒前
36秒前
小蘑菇应助wys采纳,获得10
39秒前
JamesPei应助醉熏的鑫采纳,获得10
41秒前
41秒前
孙淼发布了新的文献求助10
44秒前
红星路吃饼子的派大星完成签到 ,获得积分10
45秒前
jia完成签到 ,获得积分10
48秒前
50秒前
彭于晏应助内向书白采纳,获得10
50秒前
情怀应助huxley1121采纳,获得10
51秒前
大模型应助咕噜坚果采纳,获得10
52秒前
照照完成签到,获得积分10
52秒前
bbihk完成签到,获得积分10
56秒前
1分钟前
Clover完成签到 ,获得积分10
1分钟前
顾矜应助zdd采纳,获得10
1分钟前
1分钟前
1分钟前
潇洒的半梅完成签到,获得积分10
1分钟前
深情夏彤发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993151
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264447
捐赠科研通 3273745
什么是DOI,文献DOI怎么找? 1806151
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652