Learning From Expert: Vision-Language Knowledge Distillation for Unsupervised Cross-Modal Hashing Retrieval

计算机科学 散列函数 人工智能 特征学习 相似性(几何) 无监督学习 机器学习 自然语言处理 计算机安全 图像(数学)
作者
Lina Sun,Yewen Li,Yumin Dong
标识
DOI:10.1145/3591106.3592242
摘要

Unsupervised cross-modal hashing (UCMH) has attracted increasing research due to its efficient retrieval performance and label irrelevance. However, existing methods have some bottlenecks: Firstly, the existing unsupervised methods suffer from inaccurate similarity measures due to the lack of correlation between features of different modalities and simple features cannot fully describe the fine-grained relationships of multi-modal data. Secondly, existing methods have rarely explored vision-language knowledge distillation schemes to distil multi-modal knowledge of these vision-language models to guide the learning of student networks. To address these bottlenecks, this paper proposes an effective unsupervised cross-modal hashing retrieval method, called Vision-Language Knowledge Distillation for Unsupervised Cross-Modal Hashing Retrieval (VLKD). VLKD uses the vision-language pre-training (VLP) model to encode features on multi-modal data, and then constructs a similarity matrix to provide soft similarity supervision for the student model. It distils the knowledge of the VLP model to the student model to gain an understanding of multi-modal knowledge. In addition, we designed an end-to-end unsupervised hashing learning model that incorporates a graph convolutional auxiliary network. The auxiliary network aggregates information from similar data nodes based on the similarity matrix distilled by the teacher model to generate more consistent hash codes. Finally, the teacher network does not require additional training, it only needs to guide the student network to learn high-quality hash representation, and VLKD is quite efficient in training and retrieval. Sufficient experiments on three multimedia retrieval benchmark datasets show that the proposed method achieves better retrieval performance compared to existing unsupervised cross-modal hashing methods, demonstrating the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
保安队长完成签到,获得积分10
1秒前
纪不愁完成签到 ,获得积分10
2秒前
念与惜完成签到 ,获得积分10
2秒前
4秒前
LEI发布了新的文献求助30
5秒前
Ly完成签到,获得积分10
7秒前
科研八戒完成签到,获得积分10
7秒前
爆米花应助帅气的沧海采纳,获得10
8秒前
9秒前
小付发布了新的文献求助10
10秒前
情怀应助wsx4321采纳,获得20
15秒前
zhikaiyici发布了新的文献求助20
16秒前
cwq完成签到 ,获得积分10
18秒前
lby完成签到 ,获得积分10
19秒前
完美世界应助保持客气采纳,获得10
20秒前
老王完成签到,获得积分10
22秒前
鸣隐完成签到,获得积分10
23秒前
火星上牛青完成签到,获得积分10
23秒前
24秒前
上官若男应助烤麸采纳,获得10
25秒前
sqf1209完成签到,获得积分10
26秒前
我是老大应助很多奶油采纳,获得10
26秒前
曾经富关注了科研通微信公众号
27秒前
妞妞完成签到,获得积分10
30秒前
苏尔琳诺完成签到,获得积分10
32秒前
33秒前
33秒前
33秒前
黄伊若完成签到 ,获得积分10
34秒前
花花发布了新的文献求助10
34秒前
烤麸发布了新的文献求助10
36秒前
Shaewei完成签到,获得积分10
36秒前
SYT完成签到,获得积分10
37秒前
38秒前
仇行恶发布了新的文献求助10
38秒前
38秒前
39秒前
科研張完成签到,获得积分10
39秒前
39秒前
学术智子完成签到,获得积分10
41秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159813
求助须知:如何正确求助?哪些是违规求助? 2810709
关于积分的说明 7889177
捐赠科研通 2469823
什么是DOI,文献DOI怎么找? 1315112
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012