A Machine-Learning-Based Seismic Vulnerability Assessment Approach for Low-Rise RC Buildings

脆弱性(计算) 脆弱性评估 钢筋混凝土 结构工程 低层 工程类 地震学 计算机科学 地质学 心理学 计算机安全 心理弹性 心理治疗师
作者
Niloofar Elyasi,Eugene Kim,Chul Min Yeum
出处
期刊:Journal of Earthquake Engineering [Informa]
卷期号:28 (3): 760-776 被引量:9
标识
DOI:10.1080/13632469.2023.2220033
摘要

ABSTRACTABSTRACTSeismic vulnerability evaluation of existing buildings is essential to minimize the destructive impacts of earthquakes. Rapid visual screening (RVS) methods are simple and effective vulnerability assessment techniques to help quickly identify high-risk buildings for more detailed evaluations. Among various RVS methods, the Hassan–Sozen priority index (PI) is one of the simplest methods that can be used for low-rise reinforced concrete (RC) buildings. The PI relates simple, easily attainable geometric features of a building including number of stories, floor area, column area, and wall area to damageability. However, the relationship is overly simplified, and there is no absolute basis for defining damage classification boundaries that can be used to interpret the PI. Furthermore, given the lack of seismic parameters as inputs, the PI only allows for a relative evaluation of buildings in a specific region. To address these issues and develop a more broadly applicable RVS method, this study first proposes an improved PI evaluation method using machine learning techniques to define damage classification boundaries. Then, a new generalized RVS method is proposed that considers the PI input features and earthquake intensity measures to predict damage states. Data from six post-earthquake damage surveys (Duzce (1999), Bingol (2003), Nepal (2015), Taiwan (2016), Ecuador (2016), and Pohang (2017)) are used to train and evaluate the classification models. Two earthquake intensity features, modified Mercalli intensity and peak ground acceleration, are introduced to develop a new earthquake intensity aware RVS. The results of the proposed methodologies show a considerable improvement from the original PI with no judgment needed to define the damage classification boundaries.KEYWORDS: Seismic vulnerability assessmentrapid visual screeningreinforced concretepriority indexmachine learning Disclosure StatementNo potential conflict of interest was reported by the author(s).Data Availability StatementThe data that support the findings of this study are openly available on Datacenterhub at https://datacenterhub.org/. The code and machine learning models developed by the authors are also available on GitHub at https://github.com/uw-aser.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
ajiduo发布了新的文献求助10
2秒前
4秒前
bias完成签到,获得积分10
4秒前
4秒前
AQI完成签到,获得积分10
5秒前
5秒前
lin应助快乐的千秋采纳,获得10
5秒前
化学渣完成签到,获得积分10
5秒前
5秒前
贝湾发布了新的文献求助10
6秒前
lwl发布了新的文献求助20
6秒前
6秒前
呆呆发布了新的文献求助10
9秒前
lzy发布了新的文献求助10
11秒前
Choi发布了新的文献求助10
11秒前
化学渣发布了新的文献求助10
11秒前
xiaozhao发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
13秒前
坚强的严青应助快乐熊猫采纳,获得200
14秒前
大模型应助muxi暮夕采纳,获得10
14秒前
14秒前
14秒前
喏晨完成签到 ,获得积分10
14秒前
15秒前
搜集达人应助ajiduo采纳,获得10
16秒前
18秒前
深情安青应助友人A采纳,获得10
18秒前
aiming发布了新的文献求助10
18秒前
jia发布了新的文献求助10
19秒前
Satoru应助张秋雨采纳,获得10
19秒前
怕黑的楷瑞完成签到 ,获得积分10
19秒前
FAY发布了新的文献求助10
19秒前
王小思完成签到,获得积分20
19秒前
斯文幻天发布了新的文献求助10
19秒前
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260739
求助须知:如何正确求助?哪些是违规求助? 2901859
关于积分的说明 8317799
捐赠科研通 2571583
什么是DOI,文献DOI怎么找? 1397109
科研通“疑难数据库(出版商)”最低求助积分说明 653642
邀请新用户注册赠送积分活动 632153