A Machine-Learning-Based Seismic Vulnerability Assessment Approach for Low-Rise RC Buildings

脆弱性(计算) 脆弱性评估 钢筋混凝土 结构工程 低层 工程类 地震学 计算机科学 地质学 心理学 计算机安全 心理弹性 心理治疗师
作者
Niloofar Elyasi,Eugene Kim,Chul Min Yeum
出处
期刊:Journal of Earthquake Engineering [Taylor & Francis]
卷期号:28 (3): 760-776 被引量:9
标识
DOI:10.1080/13632469.2023.2220033
摘要

ABSTRACTABSTRACTSeismic vulnerability evaluation of existing buildings is essential to minimize the destructive impacts of earthquakes. Rapid visual screening (RVS) methods are simple and effective vulnerability assessment techniques to help quickly identify high-risk buildings for more detailed evaluations. Among various RVS methods, the Hassan–Sozen priority index (PI) is one of the simplest methods that can be used for low-rise reinforced concrete (RC) buildings. The PI relates simple, easily attainable geometric features of a building including number of stories, floor area, column area, and wall area to damageability. However, the relationship is overly simplified, and there is no absolute basis for defining damage classification boundaries that can be used to interpret the PI. Furthermore, given the lack of seismic parameters as inputs, the PI only allows for a relative evaluation of buildings in a specific region. To address these issues and develop a more broadly applicable RVS method, this study first proposes an improved PI evaluation method using machine learning techniques to define damage classification boundaries. Then, a new generalized RVS method is proposed that considers the PI input features and earthquake intensity measures to predict damage states. Data from six post-earthquake damage surveys (Duzce (1999), Bingol (2003), Nepal (2015), Taiwan (2016), Ecuador (2016), and Pohang (2017)) are used to train and evaluate the classification models. Two earthquake intensity features, modified Mercalli intensity and peak ground acceleration, are introduced to develop a new earthquake intensity aware RVS. The results of the proposed methodologies show a considerable improvement from the original PI with no judgment needed to define the damage classification boundaries.KEYWORDS: Seismic vulnerability assessmentrapid visual screeningreinforced concretepriority indexmachine learning Disclosure StatementNo potential conflict of interest was reported by the author(s).Data Availability StatementThe data that support the findings of this study are openly available on Datacenterhub at https://datacenterhub.org/. The code and machine learning models developed by the authors are also available on GitHub at https://github.com/uw-aser.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KSAcc完成签到,获得积分10
1秒前
你的样子发布了新的文献求助30
1秒前
2秒前
ta发布了新的文献求助10
2秒前
小席发布了新的文献求助10
2秒前
2秒前
白斯特发布了新的文献求助10
3秒前
1259671587完成签到,获得积分10
4秒前
5秒前
5秒前
LLQ完成签到,获得积分10
5秒前
汉堡包应助邢凡柔采纳,获得10
5秒前
现代发布了新的文献求助10
6秒前
hellohql完成签到 ,获得积分10
7秒前
佳佳应助jiayan111采纳,获得10
8秒前
领导范儿应助斑马还没睡采纳,获得10
8秒前
李健的小迷弟应助yxy采纳,获得10
9秒前
无花果应助神经小丸子采纳,获得10
10秒前
hellohql关注了科研通微信公众号
10秒前
小石头发布了新的文献求助10
10秒前
10秒前
动听秋灵完成签到,获得积分20
10秒前
10秒前
11秒前
11秒前
曲书文完成签到,获得积分10
13秒前
14秒前
燕玲发布了新的文献求助10
14秒前
传奇3应助直率的高烽采纳,获得10
15秒前
QL发布了新的文献求助10
15秒前
羊羊羊完成签到 ,获得积分10
15秒前
SYSUer发布了新的文献求助10
16秒前
喝水吗发布了新的文献求助10
16秒前
可可完成签到,获得积分10
17秒前
可可完成签到,获得积分10
18秒前
18秒前
香蕉觅云应助柒_l采纳,获得10
19秒前
邢凡柔发布了新的文献求助10
19秒前
19秒前
烟花应助April采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959583
求助须知:如何正确求助?哪些是违规求助? 3505844
关于积分的说明 11126416
捐赠科研通 3237765
什么是DOI,文献DOI怎么找? 1789326
邀请新用户注册赠送积分活动 871669
科研通“疑难数据库(出版商)”最低求助积分说明 802963