Deep learning-based bridge damage identification approach inspired by internal force redistribution effects

可解释性 计算机科学 人工智能 结构健康监测 刚度 分类器(UML) 机器学习 工程类 结构工程
作者
Kang Yang,Youliang Ding,Huachen Jiang,Yun Zhang,Zhengbo Zou
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (2): 714-732 被引量:9
标识
DOI:10.1177/14759217231176050
摘要

Damage identification has always been one of the core functions of bridge structural health monitoring (SHM) systems. Damage identification techniques based on deep learning (DL) approaches have shown great promise recently. However, DL methods still need to be improved owing to their poor interpretability and generalization performance. The fundamental reason lies in the separation between physics-based mechanical principles and data-driven DL methods. To address this issue, this paper proposes a physics-inspired approach combining the data-driven method and the internal force redistribution effects to perform efficient damage identification. Firstly, the mechanical derivation of internal force redistribution is given based on a simplified three-span continuous bridge. Then, two types of typical damage scenarios including segment stiffness decrease and prestress loss are simulated to formulate the damage dataset with monitored field data noise added. Next, a modified Transformer model with multi-dimensional output is trained to obtain the complex dynamic spatiotemporal mapping among multiple measurement points from the intact structure as a benchmark model. Finally, the relationship between multiple damage patterns and the corresponding output regression residual distribution is studied, based on which the flexible combinations of the sensors are proposed as the test set to characterize the internal force redistribution due to damage. Validation on the extended dataset showed that this approach is effective to realize preliminary identification of damage patterns and resist interference from noise at the monitoring site.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助现代的书本采纳,获得10
刚刚
1秒前
WQ发布了新的文献求助10
1秒前
123完成签到,获得积分10
1秒前
KJ完成签到,获得积分10
1秒前
lilizi完成签到,获得积分10
1秒前
东少完成签到,获得积分10
2秒前
2秒前
傻傻的飞丹完成签到 ,获得积分10
2秒前
柏文鸽完成签到,获得积分10
2秒前
2秒前
Kiana完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助20
3秒前
大狼完成签到,获得积分10
3秒前
mufcyang完成签到,获得积分10
3秒前
samurai发布了新的文献求助10
3秒前
4秒前
Agnes发布了新的文献求助10
4秒前
pp发布了新的文献求助10
4秒前
哈哈哈哈完成签到,获得积分10
4秒前
大尾巴白发布了新的文献求助10
5秒前
5秒前
ocean完成签到,获得积分10
5秒前
郭6666完成签到,获得积分10
6秒前
llly发布了新的文献求助10
6秒前
沉默诗兰完成签到,获得积分10
6秒前
6秒前
zho发布了新的文献求助10
6秒前
科研人发布了新的文献求助10
7秒前
stoneff612发布了新的文献求助10
7秒前
8秒前
MarsXHXL发布了新的文献求助10
8秒前
栀尽夏完成签到,获得积分10
8秒前
无花果应助呼啦啦采纳,获得10
8秒前
8秒前
Yang完成签到,获得积分10
8秒前
萧东辰完成签到,获得积分10
8秒前
8秒前
活泼学生完成签到,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017