Deep learning-based bridge damage identification approach inspired by internal force redistribution effects

可解释性 计算机科学 人工智能 结构健康监测 刚度 鉴定(生物学) 分类器(UML) 机器学习 工程类 结构工程 植物 生物
作者
Kang Yang,Youliang Ding,Huachen Jiang,Yun Zhang,Zhengbo Zou
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (2): 714-732 被引量:1
标识
DOI:10.1177/14759217231176050
摘要

Damage identification has always been one of the core functions of bridge structural health monitoring (SHM) systems. Damage identification techniques based on deep learning (DL) approaches have shown great promise recently. However, DL methods still need to be improved owing to their poor interpretability and generalization performance. The fundamental reason lies in the separation between physics-based mechanical principles and data-driven DL methods. To address this issue, this paper proposes a physics-inspired approach combining the data-driven method and the internal force redistribution effects to perform efficient damage identification. Firstly, the mechanical derivation of internal force redistribution is given based on a simplified three-span continuous bridge. Then, two types of typical damage scenarios including segment stiffness decrease and prestress loss are simulated to formulate the damage dataset with monitored field data noise added. Next, a modified Transformer model with multi-dimensional output is trained to obtain the complex dynamic spatiotemporal mapping among multiple measurement points from the intact structure as a benchmark model. Finally, the relationship between multiple damage patterns and the corresponding output regression residual distribution is studied, based on which the flexible combinations of the sensors are proposed as the test set to characterize the internal force redistribution due to damage. Validation on the extended dataset showed that this approach is effective to realize preliminary identification of damage patterns and resist interference from noise at the monitoring site.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slow完成签到,获得积分10
刚刚
刚刚
无花果应助松鼠采纳,获得10
1秒前
哭泣觅儿发布了新的文献求助10
1秒前
xiaoxue完成签到,获得积分10
1秒前
xdli发布了新的文献求助10
2秒前
2秒前
kkx发布了新的文献求助10
2秒前
昨夜雨疏风骤应助沐沐采纳,获得10
3秒前
落寞依珊应助沐沐采纳,获得10
3秒前
落寞依珊应助沐沐采纳,获得10
3秒前
落寞依珊应助沐沐采纳,获得10
3秒前
SciGPT应助summer夏采纳,获得10
4秒前
汉堡包应助江伊采纳,获得10
4秒前
4秒前
随遇而安应助北冥有鱼采纳,获得10
5秒前
5秒前
橙橙妈妈发布了新的文献求助10
5秒前
7秒前
8秒前
8秒前
么子发布了新的文献求助10
8秒前
欢喜的雁枫应助lpj采纳,获得50
8秒前
青灿笑发布了新的文献求助10
9秒前
10秒前
Malmever完成签到,获得积分10
10秒前
悠悠发布了新的文献求助10
10秒前
10秒前
11秒前
hhl发布了新的文献求助10
12秒前
12秒前
科研通AI5应助独特的莫言采纳,获得10
13秒前
科研通AI5应助zitang采纳,获得10
13秒前
蛋蛋姐姐给蛋蛋姐姐的求助进行了留言
13秒前
13秒前
小精灵发布了新的文献求助10
13秒前
可乐SAMA完成签到,获得积分10
13秒前
LINTERDIT关注了科研通微信公众号
13秒前
14秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756211
求助须知:如何正确求助?哪些是违规求助? 3299412
关于积分的说明 10110030
捐赠科研通 3013929
什么是DOI,文献DOI怎么找? 1655375
邀请新用户注册赠送积分活动 789739
科研通“疑难数据库(出版商)”最低求助积分说明 753415