Deep learning-based bridge damage identification approach inspired by internal force redistribution effects

可解释性 计算机科学 人工智能 结构健康监测 刚度 分类器(UML) 机器学习 工程类 结构工程
作者
Kang Yang,Youliang Ding,Huachen Jiang,Yun Zhang,Zhengbo Zou
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (2): 714-732 被引量:8
标识
DOI:10.1177/14759217231176050
摘要

Damage identification has always been one of the core functions of bridge structural health monitoring (SHM) systems. Damage identification techniques based on deep learning (DL) approaches have shown great promise recently. However, DL methods still need to be improved owing to their poor interpretability and generalization performance. The fundamental reason lies in the separation between physics-based mechanical principles and data-driven DL methods. To address this issue, this paper proposes a physics-inspired approach combining the data-driven method and the internal force redistribution effects to perform efficient damage identification. Firstly, the mechanical derivation of internal force redistribution is given based on a simplified three-span continuous bridge. Then, two types of typical damage scenarios including segment stiffness decrease and prestress loss are simulated to formulate the damage dataset with monitored field data noise added. Next, a modified Transformer model with multi-dimensional output is trained to obtain the complex dynamic spatiotemporal mapping among multiple measurement points from the intact structure as a benchmark model. Finally, the relationship between multiple damage patterns and the corresponding output regression residual distribution is studied, based on which the flexible combinations of the sensors are proposed as the test set to characterize the internal force redistribution due to damage. Validation on the extended dataset showed that this approach is effective to realize preliminary identification of damage patterns and resist interference from noise at the monitoring site.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一个句号完成签到 ,获得积分10
刚刚
2秒前
2秒前
2秒前
洁净问儿发布了新的文献求助10
4秒前
4秒前
4秒前
丘比特应助perseverance采纳,获得10
4秒前
5秒前
星河发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助30
6秒前
希望天下0贩的0应助zqz421采纳,获得10
7秒前
7秒前
江潇发布了新的文献求助10
7秒前
大笨猫猫完成签到,获得积分10
7秒前
小胖卷毛完成签到,获得积分10
8秒前
正直乘云发布了新的文献求助10
8秒前
小马甲应助本特利采纳,获得10
10秒前
善学以致用应助潘宋采纳,获得10
10秒前
11秒前
11秒前
11秒前
Arturo应助张泽涵采纳,获得10
12秒前
Yocohua发布了新的文献求助10
12秒前
大福完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
15秒前
15秒前
yurany完成签到 ,获得积分10
15秒前
15秒前
wang完成签到,获得积分10
16秒前
daigang发布了新的文献求助10
16秒前
橘子完成签到,获得积分10
16秒前
松林发布了新的文献求助10
17秒前
大笨猫猫发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934322
求助须知:如何正确求助?哪些是违规求助? 4202226
关于积分的说明 13056506
捐赠科研通 3976520
什么是DOI,文献DOI怎么找? 2179026
邀请新用户注册赠送积分活动 1195304
关于科研通互助平台的介绍 1106681