Deep learning-based bridge damage identification approach inspired by internal force redistribution effects

可解释性 计算机科学 人工智能 结构健康监测 刚度 分类器(UML) 机器学习 工程类 结构工程
作者
Kang Yang,Youliang Ding,Huachen Jiang,Yun Zhang,Zhengbo Zou
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (2): 714-732 被引量:8
标识
DOI:10.1177/14759217231176050
摘要

Damage identification has always been one of the core functions of bridge structural health monitoring (SHM) systems. Damage identification techniques based on deep learning (DL) approaches have shown great promise recently. However, DL methods still need to be improved owing to their poor interpretability and generalization performance. The fundamental reason lies in the separation between physics-based mechanical principles and data-driven DL methods. To address this issue, this paper proposes a physics-inspired approach combining the data-driven method and the internal force redistribution effects to perform efficient damage identification. Firstly, the mechanical derivation of internal force redistribution is given based on a simplified three-span continuous bridge. Then, two types of typical damage scenarios including segment stiffness decrease and prestress loss are simulated to formulate the damage dataset with monitored field data noise added. Next, a modified Transformer model with multi-dimensional output is trained to obtain the complex dynamic spatiotemporal mapping among multiple measurement points from the intact structure as a benchmark model. Finally, the relationship between multiple damage patterns and the corresponding output regression residual distribution is studied, based on which the flexible combinations of the sensors are proposed as the test set to characterize the internal force redistribution due to damage. Validation on the extended dataset showed that this approach is effective to realize preliminary identification of damage patterns and resist interference from noise at the monitoring site.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沧海一声笑完成签到,获得积分10
刚刚
dypdyp应助痴情的寒云采纳,获得10
3秒前
3秒前
orixero应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
wu8577应助科研通管家采纳,获得10
6秒前
猪猪hero应助科研通管家采纳,获得10
6秒前
Singularity应助科研通管家采纳,获得10
6秒前
CZLhaust发布了新的文献求助10
6秒前
猪猪hero应助科研通管家采纳,获得10
6秒前
扎心应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
7秒前
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
幽默梦山发布了新的文献求助10
8秒前
黄新宇发布了新的文献求助10
8秒前
xzh完成签到 ,获得积分10
9秒前
10秒前
11秒前
彳亍1117应助阳光照采纳,获得10
11秒前
lily完成签到,获得积分10
13秒前
16秒前
丘比特应助神奇宝贝采纳,获得10
19秒前
思源应助幽默梦山采纳,获得10
20秒前
zz发布了新的文献求助10
22秒前
23秒前
栀璃鸳挽发布了新的文献求助10
26秒前
jay2000完成签到,获得积分10
27秒前
无私的砖头完成签到 ,获得积分10
28秒前
45度人发布了新的文献求助20
29秒前
30秒前
虚拟的落雁完成签到,获得积分10
33秒前
34秒前
zz完成签到,获得积分10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962497
求助须知:如何正确求助?哪些是违规求助? 3508510
关于积分的说明 11141528
捐赠科研通 3241254
什么是DOI,文献DOI怎么找? 1791452
邀请新用户注册赠送积分活动 872876
科研通“疑难数据库(出版商)”最低求助积分说明 803455