已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning-based bridge damage identification approach inspired by internal force redistribution effects

可解释性 计算机科学 人工智能 结构健康监测 刚度 分类器(UML) 机器学习 工程类 结构工程
作者
Kang Yang,Youliang Ding,Huachen Jiang,Yun Zhang,Zhengbo Zou
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (2): 714-732 被引量:9
标识
DOI:10.1177/14759217231176050
摘要

Damage identification has always been one of the core functions of bridge structural health monitoring (SHM) systems. Damage identification techniques based on deep learning (DL) approaches have shown great promise recently. However, DL methods still need to be improved owing to their poor interpretability and generalization performance. The fundamental reason lies in the separation between physics-based mechanical principles and data-driven DL methods. To address this issue, this paper proposes a physics-inspired approach combining the data-driven method and the internal force redistribution effects to perform efficient damage identification. Firstly, the mechanical derivation of internal force redistribution is given based on a simplified three-span continuous bridge. Then, two types of typical damage scenarios including segment stiffness decrease and prestress loss are simulated to formulate the damage dataset with monitored field data noise added. Next, a modified Transformer model with multi-dimensional output is trained to obtain the complex dynamic spatiotemporal mapping among multiple measurement points from the intact structure as a benchmark model. Finally, the relationship between multiple damage patterns and the corresponding output regression residual distribution is studied, based on which the flexible combinations of the sensors are proposed as the test set to characterize the internal force redistribution due to damage. Validation on the extended dataset showed that this approach is effective to realize preliminary identification of damage patterns and resist interference from noise at the monitoring site.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhizhi完成签到 ,获得积分10
刚刚
7秒前
9秒前
Criminology34应助没心没肺采纳,获得10
10秒前
机灵冥发布了新的文献求助10
12秒前
大模型应助清秀翠风采纳,获得30
14秒前
14秒前
Msure发布了新的文献求助10
14秒前
别急完成签到 ,获得积分10
15秒前
dddzwn完成签到,获得积分10
16秒前
慕青应助淡淡咖啡豆采纳,获得10
18秒前
19秒前
19秒前
21秒前
vvwwvv完成签到 ,获得积分10
22秒前
文静的摩托完成签到,获得积分10
24秒前
dddzwn发布了新的文献求助10
24秒前
搜集达人应助Msure采纳,获得10
24秒前
科目三应助liuyanq采纳,获得10
25秒前
111231发布了新的文献求助10
28秒前
28秒前
共享精神应助乔婉采纳,获得10
29秒前
xx发布了新的文献求助10
30秒前
31秒前
丘比特应助机灵冥采纳,获得10
31秒前
似鱼是于无所求完成签到,获得积分10
32秒前
32秒前
石东明完成签到 ,获得积分10
34秒前
liuyanq完成签到,获得积分10
34秒前
英吉利25发布了新的文献求助10
35秒前
一er完成签到,获得积分10
37秒前
liuyanq发布了新的文献求助10
37秒前
尾状叶完成签到 ,获得积分10
39秒前
40秒前
41秒前
Akim应助研友_闾丘枫采纳,获得10
43秒前
43秒前
leedan发布了新的文献求助10
44秒前
46秒前
yuanman发布了新的文献求助10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602939
求助须知:如何正确求助?哪些是违规求助? 4688095
关于积分的说明 14852467
捐赠科研通 4686448
什么是DOI,文献DOI怎么找? 2540318
邀请新用户注册赠送积分活动 1506902
关于科研通互助平台的介绍 1471458