Robust prediction of colorectal cancer via gut microbiome 16S rRNA sequencing data

微生物群 随机森林 人体微生物群 人工智能 机器学习 结直肠癌 计算机科学 计算生物学 基因组 分类器(UML) 生物 人类微生物组计划 生物信息学 癌症 遗传学 基因
作者
Annamaria Porreca,Eliana Ibrahimi,Fabrizio Maturo,Laura Judith Marcos-Zambrano,Melisa Meto,Marta B. Lopes
出处
期刊:Journal of Medical Microbiology [Microbiology Society]
卷期号:73 (10)
标识
DOI:10.1099/jmm.0.001903
摘要

Introduction. The study addresses the challenge of utilizing human gut microbiome data for the early detection of colorectal cancer (CRC). The research emphasizes the potential of using machine learning techniques to analyze complex microbiome datasets, providing a non-invasive approach to identifying CRC-related microbial markers. Hypothesis/Gap Statement. The primary hypothesis is that a robust machine learning-based analysis of 16S rRNA microbiome data can identify specific microbial features that serve as effective biomarkers for CRC detection, overcoming the limitations of classical statistical models in high-dimensional settings. Aim. The primary objective of this study is to explore and validate the potential of the human microbiome, specifically in the colon, as a valuable source of biomarkers for colorectal cancer (CRC) detection and progression. The focus is on developing a classifier that effectively predicts the presence of CRC and normal samples based on the analysis of three previously published faecal 16S rRNA sequencing datasets. Methodology. To achieve the aim, various machine learning techniques are employed, including random forest (RF), recursive feature elimination (RFE) and a robust correlation-based technique known as the fuzzy forest (FF). The study utilizes these methods to analyse the three datasets, comparing their performance in predicting CRC and normal samples. The emphasis is on identifying the most relevant microbial features (taxa) associated with CRC development via partial dependence plots, i.e. a machine learning tool focused on explainability, visualizing how a feature influences the predicted outcome. Results. The analysis of the three faecal 16S rRNA sequencing datasets reveals the consistent and superior predictive performance of the FF compared to the RF and RFE. Notably, FF proves effective in addressing the correlation problem when assessing the importance of microbial taxa in explaining the development of CRC. The results highlight the potential of the human microbiome as a non-invasive means to detect CRC and underscore the significance of employing FF for improved predictive accuracy. Conclusion. In conclusion, this study underscores the limitations of classical statistical techniques in handling high-dimensional information such as human microbiome data. The research demonstrates the potential of the human microbiome, specifically in the colon, as a valuable source of biomarkers for CRC detection. Applying machine learning techniques, particularly the FF, is a promising approach for building a classifier to predict CRC and normal samples. The findings advocate for integrating FF to overcome the challenges associated with correlation when identifying crucial microbial features linked to CRC development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kermit发布了新的文献求助20
刚刚
1秒前
123完成签到,获得积分10
2秒前
万能图书馆应助yny采纳,获得10
2秒前
徐徐发布了新的文献求助10
2秒前
张磊完成签到,获得积分10
2秒前
小马完成签到,获得积分10
3秒前
火星上的百川完成签到,获得积分10
4秒前
5秒前
李爱国应助坚定涵柳采纳,获得10
6秒前
完美世界应助cheng采纳,获得10
7秒前
dachengzi完成签到,获得积分10
7秒前
明晨应助issmoon采纳,获得10
9秒前
小马发布了新的文献求助10
9秒前
bamboo完成签到,获得积分10
10秒前
阿斯巴达酱完成签到,获得积分10
11秒前
11秒前
所所应助火星上的百川采纳,获得10
13秒前
ysky发布了新的文献求助100
13秒前
bkagyin应助丹丹采纳,获得10
15秒前
16秒前
夏侯夏侯完成签到 ,获得积分10
16秒前
桐桐应助芝士雪豹采纳,获得10
17秒前
17秒前
cheng完成签到,获得积分10
20秒前
不安青牛应助zhijiu采纳,获得10
20秒前
大街小巷完成签到,获得积分10
21秒前
cheng发布了新的文献求助10
22秒前
23秒前
26秒前
26秒前
伏波完成签到,获得积分0
27秒前
29秒前
29秒前
29秒前
aono1999发布了新的文献求助30
30秒前
在水一方应助zhangni采纳,获得10
31秒前
丹丹发布了新的文献求助10
32秒前
稳重的安萱完成签到,获得积分10
32秒前
晓薇发布了新的文献求助10
33秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479718
求助须知:如何正确求助?哪些是违规求助? 3070265
关于积分的说明 9117282
捐赠科研通 2761992
什么是DOI,文献DOI怎么找? 1515613
邀请新用户注册赠送积分活动 701080
科研通“疑难数据库(出版商)”最低求助积分说明 699998