Robust prediction of colorectal cancer via gut microbiome 16S rRNA sequencing data

微生物群 随机森林 人体微生物群 人工智能 机器学习 结直肠癌 计算机科学 计算生物学 基因组 分类器(UML) 生物 人类微生物组计划 生物信息学 癌症 遗传学 基因
作者
Annamaria Porreca,Eliana Ibrahimi,Fabrizio Maturo,Laura Judith Marcos-Zambrano,Melisa Meto,Marta B. Lopes
出处
期刊:Journal of Medical Microbiology [Microbiology Society]
卷期号:73 (10)
标识
DOI:10.1099/jmm.0.001903
摘要

Introduction. The study addresses the challenge of utilizing human gut microbiome data for the early detection of colorectal cancer (CRC). The research emphasizes the potential of using machine learning techniques to analyze complex microbiome datasets, providing a non-invasive approach to identifying CRC-related microbial markers. Hypothesis/Gap Statement. The primary hypothesis is that a robust machine learning-based analysis of 16S rRNA microbiome data can identify specific microbial features that serve as effective biomarkers for CRC detection, overcoming the limitations of classical statistical models in high-dimensional settings. Aim. The primary objective of this study is to explore and validate the potential of the human microbiome, specifically in the colon, as a valuable source of biomarkers for colorectal cancer (CRC) detection and progression. The focus is on developing a classifier that effectively predicts the presence of CRC and normal samples based on the analysis of three previously published faecal 16S rRNA sequencing datasets. Methodology. To achieve the aim, various machine learning techniques are employed, including random forest (RF), recursive feature elimination (RFE) and a robust correlation-based technique known as the fuzzy forest (FF). The study utilizes these methods to analyse the three datasets, comparing their performance in predicting CRC and normal samples. The emphasis is on identifying the most relevant microbial features (taxa) associated with CRC development via partial dependence plots, i.e. a machine learning tool focused on explainability, visualizing how a feature influences the predicted outcome. Results. The analysis of the three faecal 16S rRNA sequencing datasets reveals the consistent and superior predictive performance of the FF compared to the RF and RFE. Notably, FF proves effective in addressing the correlation problem when assessing the importance of microbial taxa in explaining the development of CRC. The results highlight the potential of the human microbiome as a non-invasive means to detect CRC and underscore the significance of employing FF for improved predictive accuracy. Conclusion. In conclusion, this study underscores the limitations of classical statistical techniques in handling high-dimensional information such as human microbiome data. The research demonstrates the potential of the human microbiome, specifically in the colon, as a valuable source of biomarkers for CRC detection. Applying machine learning techniques, particularly the FF, is a promising approach for building a classifier to predict CRC and normal samples. The findings advocate for integrating FF to overcome the challenges associated with correlation when identifying crucial microbial features linked to CRC development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jou完成签到,获得积分10
刚刚
deer完成签到,获得积分10
1秒前
1秒前
geold完成签到,获得积分10
1秒前
温文尔雅完成签到,获得积分10
2秒前
Tomi发布了新的文献求助10
3秒前
lessormoto发布了新的文献求助20
3秒前
小冉完成签到,获得积分10
4秒前
jj完成签到,获得积分10
4秒前
天天快乐应助星星采纳,获得10
4秒前
zxs完成签到,获得积分10
4秒前
洪先生完成签到 ,获得积分10
5秒前
hi_traffic发布了新的文献求助10
5秒前
LYN完成签到,获得积分10
5秒前
alan发布了新的文献求助10
5秒前
小垚完成签到,获得积分10
5秒前
末小皮发布了新的文献求助10
6秒前
陈豆豆完成签到 ,获得积分10
7秒前
冷静曲奇完成签到 ,获得积分10
7秒前
7秒前
小田完成签到 ,获得积分10
8秒前
欢呼山雁完成签到,获得积分10
9秒前
平常谱完成签到,获得积分10
9秒前
9秒前
11秒前
温柔梦松完成签到 ,获得积分10
11秒前
小朱佩奇完成签到,获得积分10
11秒前
阿兰完成签到 ,获得积分10
11秒前
Enterprise完成签到,获得积分10
12秒前
周小鱼完成签到 ,获得积分10
12秒前
咖啡博士完成签到 ,获得积分10
13秒前
DW完成签到,获得积分10
13秒前
阿波完成签到,获得积分10
13秒前
猪肉炖粉条完成签到,获得积分20
14秒前
帕尼灬尼完成签到,获得积分10
14秒前
棉花糖完成签到 ,获得积分10
14秒前
今夕何夕发布了新的文献求助10
14秒前
加减乘除完成签到,获得积分10
15秒前
冰糖葫芦娃完成签到,获得积分10
15秒前
babe完成签到 ,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890