成核
分子动力学
降水
接口(物质)
扩散
材料科学
相(物质)
基质(化学分析)
固态
表面能
能量(信号处理)
原子单位
固溶体
热力学
原子扩散
统计物理学
化学物理
物理化学
化学
计算化学
冶金
物理
毛细管数
量子力学
毛细管作用
气象学
复合材料
有机化学
作者
Jacob P. Tavenner,Mikhail I. Mendelev,Raymond Neuberger,Raymundo Arróyave,Richard Otis,John W. Lawson
摘要
Interface free energy is a fundamental material parameter needed to predict the nucleation and growth of new phases. The high cost of experimentally determining this parameter makes it an ideal target for calculation through a physically informed simulation. Direct determination of interface free energy has many challenges, especially for solid–solid transformations. Indirect determination of the interface free energy from the nucleation data has been done in the case of solidification. However, a slow on molecular dynamics (MD) simulation time scale atomic diffusion makes this method not applicable to the case of nucleation from the solid phase when precipitate composition is different from that in matrix. To address this challenge, we outline the development of a new technique for determining the critical nucleus size from an MD simulation using a recently developed method to accelerate solid-state diffusion. The accuracy of our approach for the Ni–Al system for Ni3Al (γ′) precipitates in a Ni–Al (γ) matrix is demonstrated well within experimental accuracy and greatly improves upon previous computational methods [Herrnring et al., Acta Mater. 215(8), 117053 (2021)].
科研通智能强力驱动
Strongly Powered by AbleSci AI