尖晶石
阴极
锰
材料科学
微观结构
扫描电子显微镜
透射电子显微镜
离子
锂(药物)
相(物质)
电化学
衍射
扫描透射电子显微镜
化学工程
纳米技术
电极
光学
化学
复合材料
冶金
物理化学
物理
医学
有机化学
内分泌学
工程类
作者
Han‐Ming Hau,Tara P. Mishra,Colin Ophus,Tzu‐Yang Huang,Karen Bustilo,Yingzhi Sun,Xiaochen Yang,Tucker Holstun,Xinye Zhao,Shilong Wang,Yang Ha,Gi‐Hyeok Lee,Chengyu Song,John Turner,Jianming Bai,Lu Ma,Ke Chen,Li Wang,Wanli Yang,Bryan D. McCloskey,Zijian Cai,Gerbrand Ceder
标识
DOI:10.1038/s41565-024-01787-y
摘要
Manganese-based materials have tremendous potential to become the next-generation lithium-ion cathode as they are Earth abundant, low cost and stable. Here we show how the mobility of manganese cations can be used to obtain a unique nanosized microstructure in large-particle-sized cathode materials with enhanced electrochemical properties. By combining atomic-resolution scanning transmission electron microscopy, four-dimensional scanning electron nanodiffraction and in situ X-ray diffraction, we show that when a partially delithiated, high-manganese-content, disordered rocksalt cathode is slightly heated, it forms a nanomosaic of partially ordered spinel domains of 3-7 nm in size, which impinge on each other at antiphase boundaries. The short coherence length of these domains removes the detrimental two-phase lithiation reaction present near 3 V in a regular spinel and turns it into a solid solution. This nanodomain structure enables good rate performance and delivers 200 mAh g
科研通智能强力驱动
Strongly Powered by AbleSci AI