Rapid Regeneration of Graphite Anodes via Self‐Induced Microwave Plasma

材料科学 石墨 阳极 微波食品加热 等离子体 化学工程 纳米技术 复合材料 电极 化学 物理 物理化学 量子力学 工程类
作者
Minghui Shan,Shuchang Xu,Yunteng Cao,Bing Han,Xiao‐Qing Zhu,Ruiliang Zhang,Chenyang Dang,Jiacheng Zhu,Qi Zhou,Zhixin Xue,Xu Yinghua,Zhu Qixuan,Md. Shariful Islam,Hang Yin,Xijiang Chang,Changyong Cao,Guiyin Xu,Meifang Zhu
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202411834
摘要

Abstract Battery recycling is a promising approach to mitigate the safety, environmental, and economic threats posed by numerous discarded lithium‐ion batteries (LIBs). However, the unclear atomic‐scale degradation of spent graphite complicates recycling, resulting in energy‐intensive impurity removal and graphitization, which hampers industrialization. This study uses Cryo‐transmission electron microscopy (Cryo‐TEM) to characterize spent graphite degradation and develop a scalable graphite self‐induced microwave plasma method for efficient regeneration. Cryo‐TEM images show graphite coated with a solid electrolyte interphase (SEI) layer, revealing lattice defects and structure expansion near the surface that impair electrochemical performance. The self‐induced microwave plasma method eradicates the SEI layer and restores the graphite lattice structure within 30 s. Multiphysics simulations indicate that the microwave field generates a strong electric field on the graphite surface, causing plasma discharge and rapid surface heating. Regenerated graphite demonstrates excellent electrochemical performance, with a specific charge capacity of 352.2 mAh g −1 at 0.2 C and ≈81% capacity retention after 400 cycles, matching commercially available materials. This efficient method offers a promising approach for recycling graphite anodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
涵Allen完成签到 ,获得积分10
2秒前
pangpang完成签到,获得积分10
2秒前
2秒前
白子双完成签到,获得积分10
2秒前
cecec完成签到,获得积分10
3秒前
冷傲的如柏完成签到,获得积分10
3秒前
思源应助离子电池采纳,获得10
3秒前
4秒前
xixi关注了科研通微信公众号
4秒前
11完成签到 ,获得积分10
4秒前
4秒前
yong完成签到,获得积分10
5秒前
bella1201完成签到,获得积分10
6秒前
lucky完成签到,获得积分10
6秒前
ding应助勤奋的四娘采纳,获得10
7秒前
7秒前
toda_erica发布了新的文献求助10
7秒前
10秒前
赘婿应助受伤自行车采纳,获得10
11秒前
浮云完成签到,获得积分10
11秒前
宜醉宜游宜睡应助pangpang采纳,获得10
11秒前
Ethan发布了新的文献求助10
12秒前
蝶舞天涯完成签到,获得积分10
13秒前
14秒前
Chief完成签到,获得积分10
15秒前
崔小熊完成签到,获得积分10
16秒前
初淇完成签到,获得积分10
17秒前
qmx完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
19秒前
20秒前
随逸完成签到,获得积分10
20秒前
刘桑桑发布了新的文献求助10
22秒前
23秒前
23秒前
dingminfeng完成签到 ,获得积分10
23秒前
23秒前
scihub111发布了新的文献求助10
23秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
2019第三届中国LNG储运技术交流大会论文集 500
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2997908
求助须知:如何正确求助?哪些是违规求助? 2658557
关于积分的说明 7196855
捐赠科研通 2293987
什么是DOI,文献DOI怎么找? 1216412
科研通“疑难数据库(出版商)”最低求助积分说明 593516
版权声明 592888