Illumination-aware divide-and-conquer network for improperly-exposed image enhancement

分而治之算法 计算机科学 图像(数学) 人工智能 模式识别(心理学) 计算机视觉 算法
作者
Fenggang Han,Kan Chang,Guiqing Li,Mingyang Ling,Mengyuan Huang,Zan Gao
出处
期刊:Neural Networks [Elsevier BV]
卷期号:: 106733-106733
标识
DOI:10.1016/j.neunet.2024.106733
摘要

Improperly-exposed images often have unsatisfactory visual characteristics like inadequate illumination, low contrast, and the loss of small structures and details. The mapping relationship from an improperly-exposed condition to a well-exposed one may vary significantly due to the presence of multiple exposure conditions. Consequently, the enhancement methods that do not pay specific attention to this issue tend to yield inconsistent results when applied to the same scene under different exposure conditions. In order to obtain consistent enhancement results for various exposures while restoring rich details, we propose an illumination-aware divide-and-conquer network (IDNet). Specifically, to address the challenge of directly learning a sophisticated nonlinear mapping from an improperly-exposed condition to a well-exposed one, we utilize the discrete wavelet transform (DWT) to decompose the image into the low-frequency (LF) component, which primarily captures brightness and contrast, and the high-frequency (HF) components that depict fine-scale structures. To mitigate the inconsistency in correction across various exposures, we extract a conditional feature from the input that represents illumination-related global information. This feature is then utilized to modulate the dynamic convolution weights, enabling precise correction of the LF component. Furthermore, as the co-located positions of LF and HF components are highly correlated, we create a mask to distill useful knowledge from the corrected LF component, and integrate it into the HF component to support the restoration of fine-scale details. Extensive experimental results demonstrate that the proposed IDNet is superior to several state-of-the-art enhancement methods on two datasets with multiple exposures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助车厘子采纳,获得10
刚刚
1秒前
1秒前
负责的皮卡丘应助弋少秋采纳,获得10
2秒前
3秒前
CodeCraft应助科研人河北采纳,获得10
4秒前
xiaomaxia完成签到,获得积分10
4秒前
4秒前
旺仔女士完成签到 ,获得积分10
5秒前
爆米花应助邓年念采纳,获得10
5秒前
Tonson发布了新的文献求助10
6秒前
6秒前
ooo娜发布了新的文献求助10
7秒前
充电宝应助肥波爱吃鱼采纳,获得10
7秒前
路振银完成签到 ,获得积分10
8秒前
丘比特应助糟糕的友蕊采纳,获得10
8秒前
2.17;10.13完成签到,获得积分10
8秒前
9秒前
9秒前
浮游应助lucy_zi采纳,获得10
9秒前
苹果紊发布了新的文献求助10
9秒前
无限的幻灵应助达彦腾采纳,获得10
9秒前
Hello应助之南采纳,获得10
10秒前
yk123发布了新的文献求助10
10秒前
薛而不思则罔关注了科研通微信公众号
11秒前
11秒前
充电宝应助安详的觅风采纳,获得10
11秒前
路振银关注了科研通微信公众号
11秒前
科研通AI5应助Tonson采纳,获得10
11秒前
xuxingjie发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
酷酷念瑶发布了新的文献求助10
14秒前
sugest发布了新的文献求助10
14秒前
xiaobai发布了新的文献求助10
14秒前
浮游应助草木采纳,获得10
14秒前
15秒前
yeyeye发布了新的文献求助10
16秒前
DS发布了新的文献求助10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124930
求助须知:如何正确求助?哪些是违规求助? 4328978
关于积分的说明 13489368
捐赠科研通 4163582
什么是DOI,文献DOI怎么找? 2282431
邀请新用户注册赠送积分活动 1283622
关于科研通互助平台的介绍 1222842