已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Illumination-aware divide-and-conquer network for improperly-exposed image enhancement

分而治之算法 计算机科学 图像(数学) 人工智能 模式识别(心理学) 计算机视觉 算法
作者
Fenggang Han,Kan Chang,Guiqing Li,Mingyang Ling,Mengyuan Huang,Zan Gao
出处
期刊:Neural Networks [Elsevier BV]
卷期号:: 106733-106733
标识
DOI:10.1016/j.neunet.2024.106733
摘要

Improperly-exposed images often have unsatisfactory visual characteristics like inadequate illumination, low contrast, and the loss of small structures and details. The mapping relationship from an improperly-exposed condition to a well-exposed one may vary significantly due to the presence of multiple exposure conditions. Consequently, the enhancement methods that do not pay specific attention to this issue tend to yield inconsistent results when applied to the same scene under different exposure conditions. In order to obtain consistent enhancement results for various exposures while restoring rich details, we propose an illumination-aware divide-and-conquer network (IDNet). Specifically, to address the challenge of directly learning a sophisticated nonlinear mapping from an improperly-exposed condition to a well-exposed one, we utilize the discrete wavelet transform (DWT) to decompose the image into the low-frequency (LF) component, which primarily captures brightness and contrast, and the high-frequency (HF) components that depict fine-scale structures. To mitigate the inconsistency in correction across various exposures, we extract a conditional feature from the input that represents illumination-related global information. This feature is then utilized to modulate the dynamic convolution weights, enabling precise correction of the LF component. Furthermore, as the co-located positions of LF and HF components are highly correlated, we create a mask to distill useful knowledge from the corrected LF component, and integrate it into the HF component to support the restoration of fine-scale details. Extensive experimental results demonstrate that the proposed IDNet is superior to several state-of-the-art enhancement methods on two datasets with multiple exposures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
令宏完成签到,获得积分10
刚刚
风鱼完成签到 ,获得积分20
3秒前
Koala完成签到,获得积分10
9秒前
9秒前
令宏发布了新的文献求助10
10秒前
向东东完成签到,获得积分10
16秒前
笑点低的硬币完成签到,获得积分10
17秒前
18秒前
20秒前
斜玉完成签到,获得积分10
21秒前
vivian发布了新的文献求助10
22秒前
Xieyusen发布了新的文献求助10
26秒前
tuanheqi发布了新的文献求助20
27秒前
冷静新烟发布了新的文献求助10
29秒前
iorpi完成签到,获得积分10
33秒前
宇宇完成签到 ,获得积分10
33秒前
太叔十三完成签到 ,获得积分10
36秒前
39秒前
刘天宇完成签到 ,获得积分10
39秒前
充电宝应助焦糖采纳,获得10
39秒前
zy完成签到 ,获得积分10
40秒前
Omni完成签到 ,获得积分0
41秒前
SPLjoker完成签到 ,获得积分10
41秒前
冷艳薯片完成签到,获得积分10
42秒前
gjm完成签到,获得积分10
43秒前
47秒前
小L完成签到 ,获得积分10
47秒前
英勇的红酒完成签到 ,获得积分10
50秒前
51秒前
julien完成签到,获得积分10
52秒前
53秒前
隐形曼青应助ttt采纳,获得10
54秒前
54秒前
大个应助科研进化中采纳,获得10
58秒前
千倾完成签到 ,获得积分10
58秒前
生动夏青完成签到,获得积分10
1分钟前
ho hou h发布了新的文献求助10
1分钟前
1分钟前
在水一方应助旨酒欣欣采纳,获得10
1分钟前
leeSongha完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965486
求助须知:如何正确求助?哪些是违规求助? 3510790
关于积分的说明 11155096
捐赠科研通 3245285
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804171