Illumination-aware divide-and-conquer network for improperly-exposed image enhancement

分而治之算法 计算机科学 图像(数学) 人工智能 模式识别(心理学) 计算机视觉 算法
作者
Fenggang Han,Kan Chang,Guiqing Li,Mingyang Ling,Mengyuan Huang,Zan Gao
出处
期刊:Neural Networks [Elsevier BV]
卷期号:: 106733-106733
标识
DOI:10.1016/j.neunet.2024.106733
摘要

Improperly-exposed images often have unsatisfactory visual characteristics like inadequate illumination, low contrast, and the loss of small structures and details. The mapping relationship from an improperly-exposed condition to a well-exposed one may vary significantly due to the presence of multiple exposure conditions. Consequently, the enhancement methods that do not pay specific attention to this issue tend to yield inconsistent results when applied to the same scene under different exposure conditions. In order to obtain consistent enhancement results for various exposures while restoring rich details, we propose an illumination-aware divide-and-conquer network (IDNet). Specifically, to address the challenge of directly learning a sophisticated nonlinear mapping from an improperly-exposed condition to a well-exposed one, we utilize the discrete wavelet transform (DWT) to decompose the image into the low-frequency (LF) component, which primarily captures brightness and contrast, and the high-frequency (HF) components that depict fine-scale structures. To mitigate the inconsistency in correction across various exposures, we extract a conditional feature from the input that represents illumination-related global information. This feature is then utilized to modulate the dynamic convolution weights, enabling precise correction of the LF component. Furthermore, as the co-located positions of LF and HF components are highly correlated, we create a mask to distill useful knowledge from the corrected LF component, and integrate it into the HF component to support the restoration of fine-scale details. Extensive experimental results demonstrate that the proposed IDNet is superior to several state-of-the-art enhancement methods on two datasets with multiple exposures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Orange应助张小珂采纳,获得10
2秒前
2秒前
3秒前
hp571完成签到,获得积分10
3秒前
平常月光完成签到,获得积分20
4秒前
5秒前
saltedfish发布了新的文献求助10
5秒前
oo发布了新的文献求助20
6秒前
hp571发布了新的文献求助10
6秒前
华仔应助wangjinweige6293采纳,获得10
7秒前
愿景发布了新的文献求助10
7秒前
落尘完成签到,获得积分10
8秒前
空谷新苗发布了新的文献求助10
9秒前
狄孱发布了新的文献求助10
9秒前
温莹完成签到,获得积分10
10秒前
嘻嘻哈哈应助小火车采纳,获得10
11秒前
13秒前
上官若男应助tejing1158采纳,获得10
13秒前
慕青应助nanana采纳,获得10
14秒前
14秒前
愿景完成签到,获得积分10
14秒前
俏皮的草丛完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
rp完成签到,获得积分10
17秒前
Frank发布了新的文献求助10
18秒前
gxmu6322完成签到,获得积分10
18秒前
风中的奎完成签到 ,获得积分10
20秒前
张小珂发布了新的文献求助10
21秒前
悦耳的大炮完成签到,获得积分10
21秒前
可爱的函函应助lslfreedom采纳,获得10
22秒前
科研通AI2S应助cnulee采纳,获得10
22秒前
科目三应助小王好饿采纳,获得10
23秒前
24秒前
啵啵奶冻完成签到,获得积分10
25秒前
25秒前
25秒前
浮游应助Frank采纳,获得10
26秒前
聪慧的正豪应助Frank采纳,获得10
26秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4961218
求助须知:如何正确求助?哪些是违规求助? 4221690
关于积分的说明 13148036
捐赠科研通 4005575
什么是DOI,文献DOI怎么找? 2192278
邀请新用户注册赠送积分活动 1206156
关于科研通互助平台的介绍 1117434