Illumination-aware divide-and-conquer network for improperly-exposed image enhancement

分而治之算法 计算机科学 图像(数学) 人工智能 模式识别(心理学) 计算机视觉 算法
作者
Fenggang Han,Kan Chang,Guiqing Li,Mingyang Ling,Mengyuan Huang,Zan Gao
出处
期刊:Neural Networks [Elsevier BV]
卷期号:: 106733-106733
标识
DOI:10.1016/j.neunet.2024.106733
摘要

Improperly-exposed images often have unsatisfactory visual characteristics like inadequate illumination, low contrast, and the loss of small structures and details. The mapping relationship from an improperly-exposed condition to a well-exposed one may vary significantly due to the presence of multiple exposure conditions. Consequently, the enhancement methods that do not pay specific attention to this issue tend to yield inconsistent results when applied to the same scene under different exposure conditions. In order to obtain consistent enhancement results for various exposures while restoring rich details, we propose an illumination-aware divide-and-conquer network (IDNet). Specifically, to address the challenge of directly learning a sophisticated nonlinear mapping from an improperly-exposed condition to a well-exposed one, we utilize the discrete wavelet transform (DWT) to decompose the image into the low-frequency (LF) component, which primarily captures brightness and contrast, and the high-frequency (HF) components that depict fine-scale structures. To mitigate the inconsistency in correction across various exposures, we extract a conditional feature from the input that represents illumination-related global information. This feature is then utilized to modulate the dynamic convolution weights, enabling precise correction of the LF component. Furthermore, as the co-located positions of LF and HF components are highly correlated, we create a mask to distill useful knowledge from the corrected LF component, and integrate it into the HF component to support the restoration of fine-scale details. Extensive experimental results demonstrate that the proposed IDNet is superior to several state-of-the-art enhancement methods on two datasets with multiple exposures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yonina发布了新的文献求助10
刚刚
刚刚
tt完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
科研专家完成签到 ,获得积分10
1秒前
JamesPei应助pomelost采纳,获得10
2秒前
迅速的宛海完成签到,获得积分10
2秒前
一位名圆发布了新的文献求助10
2秒前
2秒前
ding应助JX采纳,获得10
3秒前
玉尘完成签到,获得积分20
3秒前
4秒前
orixero应助Plutus采纳,获得10
4秒前
4秒前
Junlian发布了新的文献求助10
4秒前
5秒前
Shen发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
打打应助hhh采纳,获得10
5秒前
JQB完成签到,获得积分10
5秒前
共享精神应助单薄的忆枫采纳,获得10
6秒前
Akim应助顾年采纳,获得10
6秒前
6秒前
8秒前
8秒前
heiztcasino发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
小蚊子发布了新的文献求助10
10秒前
qiaoj2006完成签到,获得积分10
10秒前
许欣瑞完成签到,获得积分10
10秒前
CipherSage应助ldy采纳,获得10
10秒前
tectextey发布了新的文献求助10
11秒前
万能图书馆应助KYTQQ采纳,获得20
12秒前
保住头发为科研完成签到,获得积分10
13秒前
田様应助北纬打工人采纳,获得10
13秒前
科目三应助无心的青槐采纳,获得20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403