Illumination-aware divide-and-conquer network for improperly-exposed image enhancement

分而治之算法 计算机科学 图像(数学) 人工智能 模式识别(心理学) 计算机视觉 算法
作者
Fenggang Han,Kan Chang,Guiqing Li,Mingyang Ling,Mengyuan Huang,Zan Gao
出处
期刊:Neural Networks [Elsevier BV]
卷期号:: 106733-106733
标识
DOI:10.1016/j.neunet.2024.106733
摘要

Improperly-exposed images often have unsatisfactory visual characteristics like inadequate illumination, low contrast, and the loss of small structures and details. The mapping relationship from an improperly-exposed condition to a well-exposed one may vary significantly due to the presence of multiple exposure conditions. Consequently, the enhancement methods that do not pay specific attention to this issue tend to yield inconsistent results when applied to the same scene under different exposure conditions. In order to obtain consistent enhancement results for various exposures while restoring rich details, we propose an illumination-aware divide-and-conquer network (IDNet). Specifically, to address the challenge of directly learning a sophisticated nonlinear mapping from an improperly-exposed condition to a well-exposed one, we utilize the discrete wavelet transform (DWT) to decompose the image into the low-frequency (LF) component, which primarily captures brightness and contrast, and the high-frequency (HF) components that depict fine-scale structures. To mitigate the inconsistency in correction across various exposures, we extract a conditional feature from the input that represents illumination-related global information. This feature is then utilized to modulate the dynamic convolution weights, enabling precise correction of the LF component. Furthermore, as the co-located positions of LF and HF components are highly correlated, we create a mask to distill useful knowledge from the corrected LF component, and integrate it into the HF component to support the restoration of fine-scale details. Extensive experimental results demonstrate that the proposed IDNet is superior to several state-of-the-art enhancement methods on two datasets with multiple exposures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
干净惜蕊完成签到,获得积分10
刚刚
1秒前
淡淡冬瓜发布了新的文献求助10
2秒前
晶晶完成签到,获得积分10
2秒前
Devastating发布了新的文献求助10
2秒前
刘桔完成签到,获得积分10
2秒前
2秒前
jiaman1031完成签到,获得积分10
2秒前
3秒前
巨鳗完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
雨田给雨田的求助进行了留言
5秒前
Happy完成签到,获得积分10
6秒前
6秒前
浮游应助aaa采纳,获得10
6秒前
accept完成签到,获得积分10
6秒前
浮游应助浮浮世世采纳,获得10
6秒前
Jasper应助小蒋采纳,获得10
6秒前
6秒前
海鸥别叫了完成签到 ,获得积分10
7秒前
科研通AI2S应助Charon采纳,获得10
7秒前
jxr发布了新的文献求助10
7秒前
大个应助ZZ采纳,获得10
7秒前
NGU发布了新的文献求助10
7秒前
memory发布了新的文献求助10
8秒前
9秒前
9秒前
JamesPei应助ouhoigo采纳,获得10
10秒前
10秒前
11tty发布了新的文献求助10
10秒前
英俊的铭应助阔达的梨愁采纳,获得10
11秒前
你好烦哦完成签到,获得积分10
11秒前
哭泣火车完成签到,获得积分10
11秒前
阿星捌发布了新的文献求助10
12秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205896
求助须知:如何正确求助?哪些是违规求助? 4384602
关于积分的说明 13653526
捐赠科研通 4242735
什么是DOI,文献DOI怎么找? 2327718
邀请新用户注册赠送积分活动 1325406
关于科研通互助平台的介绍 1277528