Illumination-aware divide-and-conquer network for improperly-exposed image enhancement

分而治之算法 计算机科学 图像(数学) 人工智能 模式识别(心理学) 计算机视觉 算法
作者
Fenggang Han,Kan Chang,Guiqing Li,Mingyang Ling,Mengyuan Huang,Zan Gao
出处
期刊:Neural Networks [Elsevier]
卷期号:: 106733-106733
标识
DOI:10.1016/j.neunet.2024.106733
摘要

Improperly-exposed images often have unsatisfactory visual characteristics like inadequate illumination, low contrast, and the loss of small structures and details. The mapping relationship from an improperly-exposed condition to a well-exposed one may vary significantly due to the presence of multiple exposure conditions. Consequently, the enhancement methods that do not pay specific attention to this issue tend to yield inconsistent results when applied to the same scene under different exposure conditions. In order to obtain consistent enhancement results for various exposures while restoring rich details, we propose an illumination-aware divide-and-conquer network (IDNet). Specifically, to address the challenge of directly learning a sophisticated nonlinear mapping from an improperly-exposed condition to a well-exposed one, we utilize the discrete wavelet transform (DWT) to decompose the image into the low-frequency (LF) component, which primarily captures brightness and contrast, and the high-frequency (HF) components that depict fine-scale structures. To mitigate the inconsistency in correction across various exposures, we extract a conditional feature from the input that represents illumination-related global information. This feature is then utilized to modulate the dynamic convolution weights, enabling precise correction of the LF component. Furthermore, as the co-located positions of LF and HF components are highly correlated, we create a mask to distill useful knowledge from the corrected LF component, and integrate it into the HF component to support the restoration of fine-scale details. Extensive experimental results demonstrate that the proposed IDNet is superior to several state-of-the-art enhancement methods on two datasets with multiple exposures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nexus发布了新的文献求助10
1秒前
1秒前
CipherSage应助剑鱼么么哒采纳,获得10
1秒前
梨llll发布了新的文献求助10
2秒前
lqt发布了新的文献求助20
2秒前
3秒前
LO7pM2发布了新的文献求助10
3秒前
xy发布了新的文献求助10
3秒前
传奇3应助淡淡代玉采纳,获得10
3秒前
4秒前
邹荣完成签到 ,获得积分10
4秒前
白白白发布了新的文献求助10
5秒前
babyJ关注了科研通微信公众号
5秒前
5秒前
大黄发布了新的文献求助10
5秒前
寻梦完成签到,获得积分0
5秒前
科研通AI2S应助又甘又刻采纳,获得10
5秒前
木子完成签到 ,获得积分10
5秒前
liyu给liyu的求助进行了留言
6秒前
6秒前
毕业就行发布了新的文献求助10
7秒前
梁朝伟应助鹭立江头采纳,获得10
7秒前
mao完成签到,获得积分10
8秒前
DE2022发布了新的文献求助10
8秒前
jekin发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
wanci应助Xppcjlan采纳,获得10
9秒前
10秒前
10秒前
11秒前
李昕123发布了新的文献求助10
12秒前
spring完成签到 ,获得积分10
13秒前
852应助qiu采纳,获得10
13秒前
ys1008发布了新的文献求助10
14秒前
努力小周完成签到,获得积分10
14秒前
Lalali发布了新的文献求助10
14秒前
zhoulangorange完成签到 ,获得积分10
15秒前
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
The Paleoanthropology of Eastern Asia 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3174638
求助须知:如何正确求助?哪些是违规求助? 2825827
关于积分的说明 7954587
捐赠科研通 2486829
什么是DOI,文献DOI怎么找? 1325509
科研通“疑难数据库(出版商)”最低求助积分说明 634498
版权声明 602734