Machine learning‐derived peripheral blood transcriptomic biomarkers for early lung cancer diagnosis: Unveiling tumor‐immune interaction mechanisms

免疫系统 肺癌 转录组 CD8型 队列 接收机工作特性 生物标志物 医学 癌症 肿瘤科 癌症研究 免疫学 内科学 生物 基因 基因表达 生物化学
作者
Xiaohua Li,Xuebing Li,Jiangyue Qin,Lei Lei,Hua Guo,Xi Zheng,Xuefeng Zeng
出处
期刊:Biofactors [Wiley]
标识
DOI:10.1002/biof.2129
摘要

Abstract Lung cancer continues to be the leading cause of cancer‐related mortality worldwide. Early detection and a comprehensive understanding of tumor‐immune interactions are crucial for improving patient outcomes. This study aimed to develop a novel biomarker panel utilizing peripheral blood transcriptomics and machine learning algorithms for early lung cancer diagnosis, while simultaneously providing insights into tumor‐immune crosstalk mechanisms. Leveraging a training cohort (GSE135304), we employed multiple machine learning algorithms to formulate a Lung Cancer Diagnostic Score (LCDS) based on peripheral blood transcriptomic features. The LCDS model's performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) in multiple validation cohorts (GSE42834, GSE157086, and an in‐house dataset). Peripheral blood samples were obtained from 20 lung cancer patients and 10 healthy control subjects, representing an in‐house cohort recruited at the Sixth People's Hospital of Chengdu. We employed advanced bioinformatics techniques to explore tumor‐immune interactions through comprehensive immune infiltration and pathway enrichment analyses. Initial screening identified 844 differentially expressed genes, which were subsequently refined to 87 genes using the Boruta feature selection algorithm. The random forest (RF) algorithm demonstrated the highest accuracy in constructing the LCDS model, yielding a mean AUC of 0.938. Lower LCDS values were significantly associated with elevated immune scores and increased CD4+ and CD8+ T‐cell infiltration, indicative of enhanced antitumor‐immune responses. Higher LCDS scores correlated with activation of hypoxia, peroxisome proliferator‐activated receptor (PPAR), and Toll‐like receptor (TLR) signaling pathways, as well as reduced DNA damage repair pathway scores. Our study presents a novel, machine learning‐derived peripheral blood transcriptomic biomarker panel with potential applications in early lung cancer diagnosis. The LCDS model not only demonstrates high accuracy in distinguishing lung cancer patients from healthy individuals but also offers valuable insights into tumor‐immune interactions and underlying cancer biology. This approach may facilitate early lung cancer detection and contribute to a deeper understanding of the molecular and cellular mechanisms underlying tumor‐immune crosstalk. Furthermore, our findings on the relationship between LCDS and immune infiltration patterns may have implications for future research on therapeutic strategies targeting the immune system in lung cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助lm0703采纳,获得10
刚刚
1秒前
ines发布了新的文献求助30
1秒前
1秒前
tanyunjuan完成签到,获得积分10
1秒前
2秒前
ingxiaiu完成签到,获得积分10
2秒前
千影完成签到,获得积分10
2秒前
舒心青旋发布了新的文献求助10
2秒前
Lucas应助小犬采纳,获得10
3秒前
暴发户发布了新的文献求助30
3秒前
zhao发布了新的文献求助10
3秒前
扶苏发布了新的文献求助10
3秒前
4秒前
Kraghc发布了新的文献求助50
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
小二郎应助陈梦鼠采纳,获得10
4秒前
5秒前
5秒前
捏捏捏发布了新的文献求助10
5秒前
5秒前
qiuwuji发布了新的文献求助10
5秒前
ming完成签到,获得积分10
5秒前
跳跃凡完成签到,获得积分20
6秒前
6秒前
6秒前
自由的冰夏完成签到,获得积分10
7秒前
7秒前
7秒前
2224536发布了新的文献求助10
8秒前
超级水壶发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助悦耳醉香采纳,获得10
8秒前
深情的芝麻完成签到,获得积分10
9秒前
风趣以云完成签到,获得积分10
9秒前
cza发布了新的文献求助10
9秒前
老杨发布了新的文献求助10
9秒前
娟娟加油发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688