Machine learning‐derived peripheral blood transcriptomic biomarkers for early lung cancer diagnosis: Unveiling tumor‐immune interaction mechanisms

免疫系统 肺癌 转录组 CD8型 队列 接收机工作特性 生物标志物 医学 癌症 肿瘤科 癌症研究 免疫学 内科学 生物 基因 基因表达 生物化学
作者
Xiaohua Li,Xuebing Li,Jiangyue Qin,Lei Lei,Hua Guo,Xi Zheng,Xuefeng Zeng
出处
期刊:Biofactors [Wiley]
标识
DOI:10.1002/biof.2129
摘要

Abstract Lung cancer continues to be the leading cause of cancer‐related mortality worldwide. Early detection and a comprehensive understanding of tumor‐immune interactions are crucial for improving patient outcomes. This study aimed to develop a novel biomarker panel utilizing peripheral blood transcriptomics and machine learning algorithms for early lung cancer diagnosis, while simultaneously providing insights into tumor‐immune crosstalk mechanisms. Leveraging a training cohort (GSE135304), we employed multiple machine learning algorithms to formulate a Lung Cancer Diagnostic Score (LCDS) based on peripheral blood transcriptomic features. The LCDS model's performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) in multiple validation cohorts (GSE42834, GSE157086, and an in‐house dataset). Peripheral blood samples were obtained from 20 lung cancer patients and 10 healthy control subjects, representing an in‐house cohort recruited at the Sixth People's Hospital of Chengdu. We employed advanced bioinformatics techniques to explore tumor‐immune interactions through comprehensive immune infiltration and pathway enrichment analyses. Initial screening identified 844 differentially expressed genes, which were subsequently refined to 87 genes using the Boruta feature selection algorithm. The random forest (RF) algorithm demonstrated the highest accuracy in constructing the LCDS model, yielding a mean AUC of 0.938. Lower LCDS values were significantly associated with elevated immune scores and increased CD4+ and CD8+ T‐cell infiltration, indicative of enhanced antitumor‐immune responses. Higher LCDS scores correlated with activation of hypoxia, peroxisome proliferator‐activated receptor (PPAR), and Toll‐like receptor (TLR) signaling pathways, as well as reduced DNA damage repair pathway scores. Our study presents a novel, machine learning‐derived peripheral blood transcriptomic biomarker panel with potential applications in early lung cancer diagnosis. The LCDS model not only demonstrates high accuracy in distinguishing lung cancer patients from healthy individuals but also offers valuable insights into tumor‐immune interactions and underlying cancer biology. This approach may facilitate early lung cancer detection and contribute to a deeper understanding of the molecular and cellular mechanisms underlying tumor‐immune crosstalk. Furthermore, our findings on the relationship between LCDS and immune infiltration patterns may have implications for future research on therapeutic strategies targeting the immune system in lung cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
务实冷风完成签到,获得积分10
1秒前
2秒前
在水一方应助进_采纳,获得10
2秒前
3秒前
饺子发布了新的文献求助10
3秒前
李一一完成签到,获得积分10
4秒前
www关闭了www文献求助
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
慕青应助Feathamity采纳,获得30
5秒前
5秒前
沉默是金发布了新的文献求助10
5秒前
栗子发布了新的文献求助10
6秒前
李健应助godblessyou采纳,获得10
7秒前
MI完成签到,获得积分10
7秒前
李一一发布了新的文献求助10
8秒前
Genius发布了新的文献求助30
8秒前
9秒前
小丸子发布了新的文献求助10
9秒前
受伤破茧发布了新的文献求助10
9秒前
zzr发布了新的文献求助10
10秒前
0712完成签到,获得积分20
10秒前
2818完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
13秒前
瑞瑞完成签到,获得积分10
13秒前
在水一方应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Icrus应助科研通管家采纳,获得10
15秒前
真实的便当完成签到,获得积分10
15秒前
熬夜波比应助科研通管家采纳,获得10
15秒前
海绵baby应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675761
求助须知:如何正确求助?哪些是违规求助? 4948864
关于积分的说明 15154614
捐赠科研通 4835061
什么是DOI,文献DOI怎么找? 2589850
邀请新用户注册赠送积分活动 1543573
关于科研通互助平台的介绍 1501325