已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning‐derived peripheral blood transcriptomic biomarkers for early lung cancer diagnosis: Unveiling tumor‐immune interaction mechanisms

免疫系统 肺癌 转录组 CD8型 队列 接收机工作特性 生物标志物 医学 癌症 肿瘤科 癌症研究 免疫学 内科学 生物 基因 基因表达 生物化学
作者
Xiaohua Li,Xuebing Li,Jiangyue Qin,Lei Lei,Hua Guo,Xi Zheng,Xuefeng Zeng
出处
期刊:Biofactors [Wiley]
标识
DOI:10.1002/biof.2129
摘要

Abstract Lung cancer continues to be the leading cause of cancer‐related mortality worldwide. Early detection and a comprehensive understanding of tumor‐immune interactions are crucial for improving patient outcomes. This study aimed to develop a novel biomarker panel utilizing peripheral blood transcriptomics and machine learning algorithms for early lung cancer diagnosis, while simultaneously providing insights into tumor‐immune crosstalk mechanisms. Leveraging a training cohort (GSE135304), we employed multiple machine learning algorithms to formulate a Lung Cancer Diagnostic Score (LCDS) based on peripheral blood transcriptomic features. The LCDS model's performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) in multiple validation cohorts (GSE42834, GSE157086, and an in‐house dataset). Peripheral blood samples were obtained from 20 lung cancer patients and 10 healthy control subjects, representing an in‐house cohort recruited at the Sixth People's Hospital of Chengdu. We employed advanced bioinformatics techniques to explore tumor‐immune interactions through comprehensive immune infiltration and pathway enrichment analyses. Initial screening identified 844 differentially expressed genes, which were subsequently refined to 87 genes using the Boruta feature selection algorithm. The random forest (RF) algorithm demonstrated the highest accuracy in constructing the LCDS model, yielding a mean AUC of 0.938. Lower LCDS values were significantly associated with elevated immune scores and increased CD4+ and CD8+ T‐cell infiltration, indicative of enhanced antitumor‐immune responses. Higher LCDS scores correlated with activation of hypoxia, peroxisome proliferator‐activated receptor (PPAR), and Toll‐like receptor (TLR) signaling pathways, as well as reduced DNA damage repair pathway scores. Our study presents a novel, machine learning‐derived peripheral blood transcriptomic biomarker panel with potential applications in early lung cancer diagnosis. The LCDS model not only demonstrates high accuracy in distinguishing lung cancer patients from healthy individuals but also offers valuable insights into tumor‐immune interactions and underlying cancer biology. This approach may facilitate early lung cancer detection and contribute to a deeper understanding of the molecular and cellular mechanisms underlying tumor‐immune crosstalk. Furthermore, our findings on the relationship between LCDS and immune infiltration patterns may have implications for future research on therapeutic strategies targeting the immune system in lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛豁发布了新的文献求助10
1秒前
和谐又菡发布了新的文献求助10
1秒前
1秒前
合适尔蝶发布了新的文献求助10
2秒前
2秒前
王欣完成签到 ,获得积分10
2秒前
3秒前
思源应助清脆大米采纳,获得10
4秒前
6秒前
青春完成签到,获得积分10
7秒前
7秒前
11秒前
上官若男应助neuron2021采纳,获得20
11秒前
12秒前
复杂的溪流完成签到,获得积分10
12秒前
14秒前
奋斗小松鼠完成签到 ,获得积分10
16秒前
Orange应助huyz采纳,获得10
16秒前
牛豁完成签到,获得积分10
17秒前
清脆大米发布了新的文献求助10
17秒前
oreo发布了新的文献求助10
17秒前
汉堡包应助ping采纳,获得10
17秒前
17秒前
一丢丢完成签到,获得积分10
21秒前
21秒前
22秒前
RAY1完成签到,获得积分10
23秒前
花呗完成签到,获得积分10
25秒前
丘比特应助会玩手机的猫采纳,获得10
26秒前
27秒前
Jasper应助Cloud采纳,获得10
28秒前
ping发布了新的文献求助10
28秒前
Akim应助啊啊啊采纳,获得10
29秒前
oreo完成签到,获得积分10
31秒前
花呗发布了新的文献求助10
31秒前
古离完成签到,获得积分10
31秒前
31秒前
科研通AI6应助LL采纳,获得30
32秒前
33秒前
kentonchow应助阿歪歪采纳,获得10
34秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384801
求助须知:如何正确求助?哪些是违规求助? 4507584
关于积分的说明 14028551
捐赠科研通 4417311
什么是DOI,文献DOI怎么找? 2426403
邀请新用户注册赠送积分活动 1419155
关于科研通互助平台的介绍 1397485