Machine learning‐derived peripheral blood transcriptomic biomarkers for early lung cancer diagnosis: Unveiling tumor‐immune interaction mechanisms

免疫系统 肺癌 转录组 CD8型 队列 接收机工作特性 生物标志物 医学 癌症 肿瘤科 癌症研究 免疫学 内科学 生物 基因 基因表达 生物化学
作者
Xiaohua Li,Xuebing Li,Jiangyue Qin,Lei Lei,Hua Guo,Xi Zheng,Xuefeng Zeng
出处
期刊:Biofactors [Wiley]
标识
DOI:10.1002/biof.2129
摘要

Abstract Lung cancer continues to be the leading cause of cancer‐related mortality worldwide. Early detection and a comprehensive understanding of tumor‐immune interactions are crucial for improving patient outcomes. This study aimed to develop a novel biomarker panel utilizing peripheral blood transcriptomics and machine learning algorithms for early lung cancer diagnosis, while simultaneously providing insights into tumor‐immune crosstalk mechanisms. Leveraging a training cohort (GSE135304), we employed multiple machine learning algorithms to formulate a Lung Cancer Diagnostic Score (LCDS) based on peripheral blood transcriptomic features. The LCDS model's performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) in multiple validation cohorts (GSE42834, GSE157086, and an in‐house dataset). Peripheral blood samples were obtained from 20 lung cancer patients and 10 healthy control subjects, representing an in‐house cohort recruited at the Sixth People's Hospital of Chengdu. We employed advanced bioinformatics techniques to explore tumor‐immune interactions through comprehensive immune infiltration and pathway enrichment analyses. Initial screening identified 844 differentially expressed genes, which were subsequently refined to 87 genes using the Boruta feature selection algorithm. The random forest (RF) algorithm demonstrated the highest accuracy in constructing the LCDS model, yielding a mean AUC of 0.938. Lower LCDS values were significantly associated with elevated immune scores and increased CD4+ and CD8+ T‐cell infiltration, indicative of enhanced antitumor‐immune responses. Higher LCDS scores correlated with activation of hypoxia, peroxisome proliferator‐activated receptor (PPAR), and Toll‐like receptor (TLR) signaling pathways, as well as reduced DNA damage repair pathway scores. Our study presents a novel, machine learning‐derived peripheral blood transcriptomic biomarker panel with potential applications in early lung cancer diagnosis. The LCDS model not only demonstrates high accuracy in distinguishing lung cancer patients from healthy individuals but also offers valuable insights into tumor‐immune interactions and underlying cancer biology. This approach may facilitate early lung cancer detection and contribute to a deeper understanding of the molecular and cellular mechanisms underlying tumor‐immune crosstalk. Furthermore, our findings on the relationship between LCDS and immune infiltration patterns may have implications for future research on therapeutic strategies targeting the immune system in lung cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助MC采纳,获得10
1秒前
baobaot发布了新的文献求助30
1秒前
1秒前
承乐应助小豆包采纳,获得10
1秒前
英姑应助小豆包采纳,获得10
1秒前
秋寒完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
斯文败类应助mikiisme采纳,获得10
3秒前
algain完成签到,获得积分10
3秒前
Wizzzzzzzy发布了新的文献求助10
3秒前
necos发布了新的文献求助10
6秒前
6秒前
7秒前
fmx完成签到,获得积分10
7秒前
残剑月发布了新的文献求助10
8秒前
8秒前
weihongjuan发布了新的文献求助10
8秒前
帅气的馒头应助酷炫初雪采纳,获得10
8秒前
janette完成签到,获得积分10
9秒前
爆米花应助乌衣白马采纳,获得10
9秒前
9秒前
财神爷心尖尖的宝儿完成签到,获得积分10
10秒前
zyc发布了新的文献求助10
10秒前
nn完成签到,获得积分20
10秒前
阿屁屁猪完成签到,获得积分10
12秒前
12秒前
TearMarks完成签到 ,获得积分10
12秒前
小白发布了新的文献求助200
12秒前
12秒前
酷波er应助baobaot采纳,获得10
13秒前
勿忘9451发布了新的文献求助10
13秒前
研友_Z6G2D8完成签到,获得积分10
13秒前
可爱的函函应助pjjpk01采纳,获得10
14秒前
贝尔摩德发布了新的文献求助10
15秒前
CR完成签到,获得积分10
16秒前
Liuya发布了新的文献求助10
16秒前
16秒前
科目三应助辛勤面包采纳,获得10
16秒前
Mrlazy发布了新的文献求助10
16秒前
小蘑菇应助马明旋采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836