Machine learning‐derived peripheral blood transcriptomic biomarkers for early lung cancer diagnosis: Unveiling tumor‐immune interaction mechanisms

免疫系统 肺癌 转录组 CD8型 队列 接收机工作特性 生物标志物 医学 癌症 肿瘤科 癌症研究 免疫学 内科学 生物 基因 基因表达 生物化学
作者
Xiaohua Li,Xuebing Li,Jiangyue Qin,Lei Lei,Hua Guo,Xi Zheng,Xuefeng Zeng
出处
期刊:Biofactors [Wiley]
标识
DOI:10.1002/biof.2129
摘要

Abstract Lung cancer continues to be the leading cause of cancer‐related mortality worldwide. Early detection and a comprehensive understanding of tumor‐immune interactions are crucial for improving patient outcomes. This study aimed to develop a novel biomarker panel utilizing peripheral blood transcriptomics and machine learning algorithms for early lung cancer diagnosis, while simultaneously providing insights into tumor‐immune crosstalk mechanisms. Leveraging a training cohort (GSE135304), we employed multiple machine learning algorithms to formulate a Lung Cancer Diagnostic Score (LCDS) based on peripheral blood transcriptomic features. The LCDS model's performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) in multiple validation cohorts (GSE42834, GSE157086, and an in‐house dataset). Peripheral blood samples were obtained from 20 lung cancer patients and 10 healthy control subjects, representing an in‐house cohort recruited at the Sixth People's Hospital of Chengdu. We employed advanced bioinformatics techniques to explore tumor‐immune interactions through comprehensive immune infiltration and pathway enrichment analyses. Initial screening identified 844 differentially expressed genes, which were subsequently refined to 87 genes using the Boruta feature selection algorithm. The random forest (RF) algorithm demonstrated the highest accuracy in constructing the LCDS model, yielding a mean AUC of 0.938. Lower LCDS values were significantly associated with elevated immune scores and increased CD4+ and CD8+ T‐cell infiltration, indicative of enhanced antitumor‐immune responses. Higher LCDS scores correlated with activation of hypoxia, peroxisome proliferator‐activated receptor (PPAR), and Toll‐like receptor (TLR) signaling pathways, as well as reduced DNA damage repair pathway scores. Our study presents a novel, machine learning‐derived peripheral blood transcriptomic biomarker panel with potential applications in early lung cancer diagnosis. The LCDS model not only demonstrates high accuracy in distinguishing lung cancer patients from healthy individuals but also offers valuable insights into tumor‐immune interactions and underlying cancer biology. This approach may facilitate early lung cancer detection and contribute to a deeper understanding of the molecular and cellular mechanisms underlying tumor‐immune crosstalk. Furthermore, our findings on the relationship between LCDS and immune infiltration patterns may have implications for future research on therapeutic strategies targeting the immune system in lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqq完成签到,获得积分10
1秒前
1秒前
二甲酚橙完成签到,获得积分10
2秒前
2秒前
2秒前
4秒前
刘佳灏完成签到,获得积分10
4秒前
CipherSage应助西北望采纳,获得10
6秒前
今后应助善良的小白菜采纳,获得10
6秒前
一一应助左白易采纳,获得20
7秒前
7秒前
孤独银耳汤关注了科研通微信公众号
7秒前
刘佳灏发布了新的文献求助10
8秒前
孙成成完成签到 ,获得积分10
11秒前
Ls完成签到 ,获得积分10
11秒前
Jenny完成签到,获得积分10
11秒前
Lucas应助爱幻想的青柠采纳,获得10
14秒前
夏沫完成签到,获得积分10
14秒前
ider给ider的求助进行了留言
15秒前
999z完成签到,获得积分10
16秒前
16秒前
左白易完成签到,获得积分10
17秒前
17秒前
17秒前
白鸽应助Last炫神丶采纳,获得10
17秒前
李爱国应助甜蜜的飞松采纳,获得30
18秒前
Lucia发布了新的文献求助30
18秒前
TORCH完成签到 ,获得积分10
19秒前
20秒前
21秒前
明年关注了科研通微信公众号
23秒前
张怡博完成签到 ,获得积分10
26秒前
27秒前
天真的tian发布了新的文献求助10
27秒前
热心的咖啡豆完成签到,获得积分10
33秒前
33秒前
34秒前
38秒前
38秒前
sss发布了新的文献求助10
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136067
求助须知:如何正确求助?哪些是违规求助? 2786953
关于积分的说明 7779912
捐赠科研通 2443071
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625244
版权声明 600870