MSTCRB: Predicting circRNA-RBP interaction by extracting multi-scale features based on transformer and attention mechanism

变压器 源代码 机器学习 深度学习 计算生物学 计算机科学 数据挖掘 人工智能 生物 工程类 电气工程 操作系统 电压
作者
Yun Zhou,Haoyu Cui,Dong Liu,Wei Wang
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:278: 134805-134805
标识
DOI:10.1016/j.ijbiomac.2024.134805
摘要

CircRNAs play vital roles in biological system mainly through binding RNA-binding protein (RBP), which is essential for regulating physiological processes in vivo and for identifying causal disease variants. Therefore, predicting interactions between circRNA and RBP is a critical step for the discovery of new therapeutic agents. Application of various deep-learning models in bioinformatics has significantly improved prediction and classification performance. However, most of existing prediction models are only applicable to specific type of RNA or RNA with simple characteristics. In this study, we proposed an attractive deep learning model, MSTCRB, based on transformer and attention mechanism for extracting multi-scale features to predict circRNA-RBP interactions. Therein, K-mer and KNF encoding are employed to capture the global sequence features of circRNA, NCP and DPCP encoding are utilized to extract local sequence features, and the CDPfold method is applied to extract structural features. In order to improve prediction performance, optimized transformer framework and attention mechanism were used to integrate these multi-scale features. We compared our model's performance with other five state-of-the-art methods on 37 circRNA datasets and 31 linear RNA datasets. The results show that the average AUC value of MSTCRB reaches 98.45 %, which is better than other comparative methods. All of above datasets are deposited in https://github.com/chy001228/MSTCRB_database.git and source code are available from https://github.com/chy001228/MSTCRB.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慢慢完成签到,获得积分10
刚刚
刚刚
1秒前
雨中客完成签到,获得积分10
1秒前
缓慢芙发布了新的文献求助30
1秒前
橘子海发布了新的文献求助10
2秒前
蒙开心完成签到 ,获得积分10
2秒前
rio关闭了rio文献求助
2秒前
2秒前
3秒前
内向的小蚂蚁完成签到,获得积分10
3秒前
光电效应完成签到,获得积分10
4秒前
小丫头完成签到,获得积分10
4秒前
4秒前
冷傲达发布了新的文献求助10
5秒前
独爱小新发布了新的文献求助10
5秒前
噗噗发布了新的文献求助10
5秒前
CipherSage应助酷炫若枫采纳,获得10
5秒前
6秒前
陈梓完成签到,获得积分10
6秒前
6秒前
7秒前
无心的蓝完成签到 ,获得积分10
7秒前
duckspy完成签到 ,获得积分10
7秒前
喵喵完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
七分糖完成签到,获得积分20
11秒前
梅零落完成签到,获得积分10
12秒前
自律重度依赖完成签到,获得积分10
12秒前
FashionBoy应助是玥玥啊采纳,获得10
12秒前
13秒前
H先生发布了新的文献求助10
14秒前
东莨菪碱发布了新的文献求助10
14秒前
Y.J发布了新的文献求助10
14秒前
辛谷方松永旭完成签到 ,获得积分10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300482
求助须知:如何正确求助?哪些是违规求助? 2935051
关于积分的说明 8471788
捐赠科研通 2608704
什么是DOI,文献DOI怎么找? 1424361
科研通“疑难数据库(出版商)”最低求助积分说明 662003
邀请新用户注册赠送积分活动 645653