Diversity matters: Cross-head mutual mean-teaching for semi-supervised medical image segmentation

过度拟合 计算机科学 一致性(知识库) 人工智能 相互信息 分割 特征(语言学) 机器学习 一般化 模式识别(心理学) 集合(抽象数据类型) 边界判定 数据集 数据挖掘 人工神经网络 数学 支持向量机 数学分析 语言学 哲学 程序设计语言
作者
Wei Li,Ruifeng Bian,Wenyi Zhao,Weijin Xu,Huihua Yang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103302-103302
标识
DOI:10.1016/j.media.2024.103302
摘要

Semi-supervised medical image segmentation (SSMIS) has witnessed substantial advancements by leveraging limited labeled data and abundant unlabeled data. Nevertheless, existing state-of-the-art (SOTA) methods encounter challenges in accurately predicting labels for the unlabeled data, giving rise to disruptive noise during training and susceptibility to erroneous information overfitting. Moreover, applying perturbations to inaccurate predictions further impedes consistent learning. To address these concerns, we propose a novel cross-head mutual mean-teaching network (CMMT-Net) incorporated weak-strong data augmentations, thereby benefiting both co-training and consistency learning. More concretely, our CMMT-Net extends the cross-head co-training paradigm by introducing two auxiliary mean teacher models, which yield more accurate predictions and provide supplementary supervision. The predictions derived from weakly augmented samples generated by one mean teacher are leveraged to guide the training of another student with strongly augmented samples. Furthermore, two distinct yet synergistic data perturbations at the pixel and region levels are introduced. We propose mutual virtual adversarial training (MVAT) to smooth the decision boundary and enhance feature representations, and a cross-set CutMix strategy to generate more diverse training samples for capturing inherent structural data information. Notably, CMMT-Net simultaneously implements data, feature, and network perturbations, amplifying model diversity and generalization performance. Experimental results on three publicly available datasets indicate that our approach yields remarkable improvements over previous SOTA methods across various semi-supervised scenarios. The code is available at https://github.com/Leesoon1984/CMMT-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
川川完成签到,获得积分10
2秒前
2秒前
chen发布了新的文献求助10
4秒前
细心语琴发布了新的文献求助150
5秒前
FashionBoy应助坦率依柔采纳,获得30
5秒前
Lucas应助害羞的安萱采纳,获得10
6秒前
西瓜完成签到 ,获得积分10
6秒前
宝宝完成签到 ,获得积分10
7秒前
充电宝应助Arthur采纳,获得10
7秒前
8秒前
自由的中蓝完成签到 ,获得积分10
9秒前
丘比特应助受伤翠容采纳,获得10
10秒前
xiaoqin完成签到,获得积分10
10秒前
zedon完成签到 ,获得积分10
11秒前
窗户上的喵咪很无聊完成签到 ,获得积分10
11秒前
英勇的幻露完成签到,获得积分10
11秒前
xmy完成签到,获得积分10
11秒前
朴实的行云完成签到 ,获得积分10
12秒前
14秒前
14秒前
xiaoqin发布了新的文献求助10
14秒前
15秒前
虚幻青发布了新的文献求助10
15秒前
平常的可乐完成签到 ,获得积分10
17秒前
18秒前
19秒前
19秒前
能干柚子完成签到,获得积分20
20秒前
21秒前
打打应助虚幻青采纳,获得10
21秒前
奶盐牙牙乐完成签到 ,获得积分10
22秒前
称心誉完成签到,获得积分20
22秒前
肉脸小鱼发布了新的文献求助10
22秒前
24秒前
汉堡包应助Xu采纳,获得10
24秒前
受伤翠容完成签到,获得积分10
24秒前
雨安应助goodnight采纳,获得10
25秒前
26秒前
猫头兔搞科研完成签到,获得积分10
29秒前
巧克力完成签到 ,获得积分10
29秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266065
求助须知:如何正确求助?哪些是违规求助? 2905891
关于积分的说明 8335903
捐赠科研通 2576298
什么是DOI,文献DOI怎么找? 1400373
科研通“疑难数据库(出版商)”最低求助积分说明 654762
邀请新用户注册赠送积分活动 633652