下层林
环境科学
天蓬
气候变化
全球变暖
森林地面
生态学
中观
优势(遗传学)
农林复合经营
全球变化
生态系统
生物
生物化学
基因
作者
Eline Lorer,Dries Landuyt,Haben Blondeel,Pieter De Frenne,Kris Verheyen
摘要
Abstract Light availability profoundly influences plant communities, especially below dense tree canopies in forests. Canopy disturbances, altering forest floor light conditions, together with other environmental changes such as climate change, nitrogen deposition and legacy effects from previous land‐use will simultaneously impact forest understorey communities. Yet, knowledge on the individual effects of these drivers and their potential interactions remains scarce. Here we performed a forest mesocosm experiment to assess the influence of warming, illumination (simulating canopy opening), nitrogen deposition and soil land‐use history (comparing ancient and post‐agricultural forest soil) on understorey community composition trajectories over a 7‐year period. Strikingly, understorey communities primarily evolved in response to the deeply shaded ambient forest conditions, with experimental treatments exerting only secondary influences. The overruling trajectory steered all mesocosms towards slow‐colonizing forest specialist communities dominated by spring geophytes with lower nutrient‐demand. The illumination treatment and, to a lesser extent, warming and agricultural land‐use legacy slowed down this trend by advancing fast‐growing resource‐acquisitive generalist species. Warm ambient temperatures induced thermophilization of plant communities in all treatments, including control plots, towards higher dominance of warm‐adapted species. Nitrogen addition accelerated this thermophilization process and increased the community light‐demand signature. Land‐use legacy effects were limited in our study. Our findings underscore the essential role of limited light availability in preserving forest specialists in understorey communities and highlight the importance of maintaining a dense canopy cover to attenuate global change impacts. It is crucial to integrate this knowledge in forest management adaptation to global change, particularly in the face of increasing demands for wood and wood products and intensified natural canopy disturbances.
科研通智能强力驱动
Strongly Powered by AbleSci AI