On Human Visual Contrast Sensitivity and Machine Vision Robustness: A Comparative Study

人工智能 稳健性(进化) 计算机科学 对比度(视觉) 计算机视觉 人类视觉系统模型 机器视觉 颜色对比度 图像(数学) 生物化学 化学 基因
作者
Ming-Chang Chiu,Yingfei Wang,Derrick Eui Gyu Kim,Pin‐Yu Chen,Xuezhe Ma
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2212.08650
摘要

It is well established in neuroscience that color vision plays an essential part in the human visual perception system. Meanwhile, many novel designs for computer vision inspired by human vision have achieved success in a wide range of tasks and applications. Nonetheless, how color differences affect machine vision has not been well explored. Our work tries to bridge this gap between the human color vision aspect of visual recognition and that of the machine. To achieve this, we curate two datasets: CIFAR10-F and CIFAR100-F, which are based on the foreground colors of the popular CIFAR datasets. Together with CIFAR10-B and CIFAR100-B, the existing counterpart datasets with information on the background colors of CIFAR test sets, we assign each image based on its color contrast level per its foreground and background color labels and use this as a proxy to study how color contrast affects machine vision. We first conduct a proof-of-concept study, showing the effect of color difference and validate our datasets. Furthermore, on a broader level, an important characteristic of human vision is its robustness against ambient changes; therefore, drawing inspirations from ophthalmology and the robustness literature, we analogize contrast sensitivity from the human visual aspect to machine vision and complement the current robustness study using corrupted images with our CIFAR-CoCo datasets. In summary, motivated by neuroscience and equipped with the datasets we curate, we devise a new framework in two dimensions to perform extensive analyses on the effect of color contrast and corrupted images: (1) model architecture, (2) model size, to measure the perception ability of machine vision beyond total accuracy. We also explore how task complexity and data augmentation play a role in this setup. Our results call attention to new evaluation approaches for human-like machine perception.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
大气山兰应助iiinns采纳,获得10
1秒前
LSH105发布了新的文献求助10
1秒前
rangshuman完成签到,获得积分10
1秒前
1秒前
共享精神应助满满采纳,获得10
2秒前
归尘发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
515发布了新的文献求助10
4秒前
4秒前
科研通AI5应助文刀武书生采纳,获得10
5秒前
hhhhh完成签到,获得积分10
5秒前
5秒前
5秒前
罗红豆发布了新的文献求助10
5秒前
Yiwell发布了新的文献求助10
6秒前
Vine完成签到 ,获得积分10
7秒前
星辰大海应助漂sheep过海采纳,获得10
7秒前
Jasper应助brick2024采纳,获得10
8秒前
8秒前
研友_VZG7GZ应助zizizi采纳,获得10
8秒前
牛牛发布了新的文献求助10
8秒前
霸气凡白发布了新的文献求助30
9秒前
9秒前
BEYOND啊发布了新的文献求助10
10秒前
Ramsey关注了科研通微信公众号
10秒前
义气妙之发布了新的文献求助10
10秒前
SisiZheng完成签到,获得积分20
11秒前
砖家房博士关注了科研通微信公众号
12秒前
dd发布了新的文献求助10
12秒前
皮克曼的模特给皮克曼的模特的求助进行了留言
12秒前
文刀武书生完成签到,获得积分10
12秒前
我是老大应助隐形的迎南采纳,获得10
13秒前
思源应助戴衡霞采纳,获得10
13秒前
yue完成签到,获得积分10
14秒前
李健应助狂野世立采纳,获得10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515778
求助须知:如何正确求助?哪些是违规求助? 3098003
关于积分的说明 9237753
捐赠科研通 2792964
什么是DOI,文献DOI怎么找? 1532775
邀请新用户注册赠送积分活动 712297
科研通“疑难数据库(出版商)”最低求助积分说明 707233