A Spatiotemporal Interpolation Graph Convolutional Network for Estimating PM₂.₅ Concentrations Based on Urban Functional Zones

北京 图形 插值(计算机图形学) 符号 图像分辨率 计算机科学 比例(比率) 图像(数学) 数学 人工智能 遥感 模式识别(心理学) 地图学 地理 理论计算机科学 算术 考古 中国
作者
Xinya Chen,Yinghua Zhang,Yuebin Wang,Liqiang Zhang,Zhiyu Yi,Hanchao Zhang,P. Takis Mathiopoulos
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:6
标识
DOI:10.1109/tgrs.2022.3231968
摘要

Urban functional zones (UFZs) contain abundant landscape information that can be adopted to better understand the surroundings. Various landscape compositions and configurations reflect different human activities, which may affect the particulate matter (PM2.5) concentrations. The very high-resolution (VHR) image features can reflect the physical and spatial structures of the UFZs. However, the existing PM2.5 estimation methods neither have been based on the scale of UFZs, nor have the VHR image features of UFZs as independent variables. Hence, this article proposes a spatiotemporal interpolation graph convolutional network (STI-GCN) model and introduces VHR image features to achieve PM2.5 estimation in UFZs. First, UFZs are split, and VHR image features are extracted by the visual geometry group 16 (VGG16). Subsequently, meteorological factors, aerosol optical depth (AOD), and VHR image features are used to estimate the PM2.5 concentrations at the scale of the UFZs. The two metropolises, Beijing and Shanghai, are chosen to assess the validity of the STI-GCN model. As for Beijing and Shanghai, the overall accuracy ${R^{2}}$ of the STI-GCN model can reach 0.96 and 0.89, the root-mean-square errors (RMSEs) are 8.15 and 6.40 $\mu \text {g}/{\text {m}^{3}}$ , the mean absolute errors (MAEs) are 5.51 and 4.78 $\mu \text {g}/{\text {m}^{3}}$ , and the relative prediction errors (RPEs) are 18.53% and 17.38%, respectively. Experiments show that the STI-GCN consistently outperforms other models. What's more, the PM2.5 values are relatively high in commercial and official zones (COZs) and relatively low in urban green zones (UGZs).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
g_f完成签到,获得积分10
3秒前
g_f发布了新的文献求助10
6秒前
Mu完成签到,获得积分10
7秒前
大妙妙完成签到 ,获得积分10
7秒前
8秒前
8秒前
草莓奶昔完成签到 ,获得积分10
9秒前
88完成签到 ,获得积分10
11秒前
wangyanling完成签到 ,获得积分10
12秒前
天天快乐应助聪聪采纳,获得10
12秒前
嘉深发布了新的文献求助200
13秒前
13秒前
鑫鑫完成签到 ,获得积分10
14秒前
欢喜猴完成签到,获得积分10
16秒前
向南0308完成签到,获得积分10
17秒前
20秒前
asdfqwer应助科研通管家采纳,获得10
20秒前
大个应助科研通管家采纳,获得10
21秒前
无花果应助科研通管家采纳,获得10
21秒前
孤存完成签到 ,获得积分10
21秒前
共享精神应助科研通管家采纳,获得10
21秒前
和平使命应助科研通管家采纳,获得10
21秒前
华仔应助科研通管家采纳,获得10
21秒前
小鸭子应助科研通管家采纳,获得10
21秒前
RebeccaHe应助科研通管家采纳,获得10
21秒前
皮念寒完成签到,获得积分10
21秒前
21秒前
21秒前
miaomiao完成签到,获得积分10
22秒前
23秒前
wanci应助于晨欣采纳,获得10
24秒前
实验顺顺利利完成签到 ,获得积分10
25秒前
Nancy0818完成签到 ,获得积分10
25秒前
斯文败类应助迪奥哒采纳,获得10
26秒前
zheshi1完成签到,获得积分10
26秒前
26秒前
26秒前
小党打地鼠完成签到,获得积分10
27秒前
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312259
求助须知:如何正确求助?哪些是违规求助? 2944883
关于积分的说明 8521919
捐赠科研通 2620620
什么是DOI,文献DOI怎么找? 1432965
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650134