Short-Term Electricity Load Forecasting Based on Temporal Fusion Transformer Model

计算机科学 自回归积分移动平均 变压器 循环神经网络 人工神经网络 电力市场 电力系统 期限(时间) 时间序列 人工智能 可靠性工程 实时计算 机器学习 功率(物理) 工程类 电压 物理 电气工程 量子力学
作者
Pham Canh Huy,Minh Nguyen,Nguyen Dang Tien,Tao Thi Quynh Anh
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 106296-106304 被引量:31
标识
DOI:10.1109/access.2022.3211941
摘要

Electricity load forecasting plays an important role in the operation of power systems. Inaccurate forecast would reduce the safety of power supply and affect the economic and social activities as well as national defense and security. In addition, the forecast results also support decision-making on electricity generation and market transactions. Traditional methods such as AR, ARIMA, SARIMA have been widely used to forecast short term electricity load. Recently, load forecasting based on artificial and deep neural networks have shown significant accuracy improvement over traditional statistical models. In this research, a novel recurrent neural network named temporal fusion transformer (TFT) is used to forecast short-term electricity load of Hanoi city. The TFT is a newly developed model and it combines the advantages of several other RNN models such as LSTM and the self-attention mechanism. In addition to historical load data, we use temperature and humidity features, and time features such as calendar month, lunar month, days of the week, hours of the day and holidays. The forecast results of TFT are compared with traditional statistical models as well as well-known RNN models. The compared results show that the proposed method is better than other methods in both MAE and MAPE criteria.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月儿发布了新的文献求助10
2秒前
pcx完成签到,获得积分10
2秒前
刘小七发布了新的文献求助10
6秒前
东山发布了新的文献求助10
6秒前
Hanoi347发布了新的文献求助10
7秒前
喜悦斌完成签到,获得积分10
7秒前
8秒前
Ariok发布了新的文献求助10
8秒前
田様应助小北采纳,获得10
10秒前
11秒前
13秒前
13秒前
潇洒的浩然完成签到,获得积分10
13秒前
Lzced完成签到 ,获得积分10
13秒前
wubo完成签到,获得积分10
14秒前
14秒前
白鸿瑞发布了新的文献求助10
15秒前
田様应助经常的摸鱼采纳,获得10
15秒前
16秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
罗威椒完成签到,获得积分10
19秒前
12发布了新的文献求助10
20秒前
李健的粉丝团团长应助天南采纳,获得100
20秒前
高兴英完成签到,获得积分10
22秒前
健壮的紫夏完成签到,获得积分10
22秒前
烟花应助罗威椒采纳,获得10
23秒前
小北发布了新的文献求助10
24秒前
25秒前
27秒前
所所应助研友_n2yJbL采纳,获得10
28秒前
十九发布了新的文献求助10
28秒前
所所应助端庄的蜡烛采纳,获得10
29秒前
一个发布了新的文献求助10
30秒前
孤灯剑客完成签到,获得积分10
30秒前
夏侯觅风发布了新的文献求助10
31秒前
谦让的牛排完成签到 ,获得积分10
35秒前
36秒前
37秒前
细心帽子完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571822
求助须知:如何正确求助?哪些是违规求助? 4656993
关于积分的说明 14718727
捐赠科研通 4597831
什么是DOI,文献DOI怎么找? 2523395
邀请新用户注册赠送积分活动 1494239
关于科研通互助平台的介绍 1464312