Short-Term Electricity Load Forecasting Based on Temporal Fusion Transformer Model

计算机科学 自回归积分移动平均 变压器 循环神经网络 人工神经网络 电力市场 电力系统 期限(时间) 时间序列 人工智能 可靠性工程 实时计算 机器学习 功率(物理) 工程类 电压 物理 电气工程 量子力学
作者
Pham Canh Huy,Minh Nguyen,Nguyen Dang Tien,Tao Thi Quynh Anh
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 106296-106304 被引量:31
标识
DOI:10.1109/access.2022.3211941
摘要

Electricity load forecasting plays an important role in the operation of power systems. Inaccurate forecast would reduce the safety of power supply and affect the economic and social activities as well as national defense and security. In addition, the forecast results also support decision-making on electricity generation and market transactions. Traditional methods such as AR, ARIMA, SARIMA have been widely used to forecast short term electricity load. Recently, load forecasting based on artificial and deep neural networks have shown significant accuracy improvement over traditional statistical models. In this research, a novel recurrent neural network named temporal fusion transformer (TFT) is used to forecast short-term electricity load of Hanoi city. The TFT is a newly developed model and it combines the advantages of several other RNN models such as LSTM and the self-attention mechanism. In addition to historical load data, we use temperature and humidity features, and time features such as calendar month, lunar month, days of the week, hours of the day and holidays. The forecast results of TFT are compared with traditional statistical models as well as well-known RNN models. The compared results show that the proposed method is better than other methods in both MAE and MAPE criteria.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Aipoi发布了新的文献求助10
1秒前
1秒前
1秒前
冯俞淇发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
852应助被风吹过的路采纳,获得10
4秒前
4秒前
吱吱发布了新的文献求助10
5秒前
贪玩半雪发布了新的文献求助10
5秒前
5秒前
5秒前
科研dog发布了新的文献求助10
6秒前
lizhen发布了新的文献求助10
6秒前
chen完成签到,获得积分10
7秒前
aka2012发布了新的文献求助10
7秒前
enen发布了新的文献求助10
7秒前
坦率尔蝶完成签到 ,获得积分10
7秒前
huodian4发布了新的文献求助10
7秒前
dili827发布了新的文献求助10
7秒前
hudaojiadecaigou完成签到,获得积分10
8秒前
脑洞疼应助Joseph0209采纳,获得10
8秒前
9秒前
10秒前
10秒前
隐形曼青应助南北采纳,获得30
10秒前
英姑应助冯俞淇采纳,获得10
10秒前
11秒前
cc发布了新的文献求助10
11秒前
11秒前
liu发布了新的文献求助10
11秒前
沉默的倔驴应助danielsong采纳,获得10
12秒前
muderder发布了新的文献求助10
12秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582167
求助须知:如何正确求助?哪些是违规求助? 4666373
关于积分的说明 14762023
捐赠科研通 4608313
什么是DOI,文献DOI怎么找? 2528621
邀请新用户注册赠送积分活动 1497921
关于科研通互助平台的介绍 1466671