Short-Term Electricity Load Forecasting Based on Temporal Fusion Transformer Model

计算机科学 自回归积分移动平均 变压器 循环神经网络 人工神经网络 电力市场 电力系统 期限(时间) 时间序列 人工智能 可靠性工程 实时计算 机器学习 功率(物理) 工程类 电压 物理 电气工程 量子力学
作者
Pham Canh Huy,Minh Nguyen,Nguyen Dang Tien,Tao Thi Quynh Anh
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 106296-106304 被引量:31
标识
DOI:10.1109/access.2022.3211941
摘要

Electricity load forecasting plays an important role in the operation of power systems. Inaccurate forecast would reduce the safety of power supply and affect the economic and social activities as well as national defense and security. In addition, the forecast results also support decision-making on electricity generation and market transactions. Traditional methods such as AR, ARIMA, SARIMA have been widely used to forecast short term electricity load. Recently, load forecasting based on artificial and deep neural networks have shown significant accuracy improvement over traditional statistical models. In this research, a novel recurrent neural network named temporal fusion transformer (TFT) is used to forecast short-term electricity load of Hanoi city. The TFT is a newly developed model and it combines the advantages of several other RNN models such as LSTM and the self-attention mechanism. In addition to historical load data, we use temperature and humidity features, and time features such as calendar month, lunar month, days of the week, hours of the day and holidays. The forecast results of TFT are compared with traditional statistical models as well as well-known RNN models. The compared results show that the proposed method is better than other methods in both MAE and MAPE criteria.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助chie采纳,获得10
刚刚
actor2006完成签到,获得积分10
刚刚
刚刚
1秒前
QX完成签到,获得积分10
1秒前
2秒前
xh完成签到 ,获得积分10
3秒前
3秒前
科目三应助actor2006采纳,获得10
4秒前
4秒前
4秒前
4秒前
wtldkz发布了新的文献求助10
5秒前
zhoutian发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
zhou_完成签到,获得积分10
6秒前
科研通AI6应助朴实曼岚采纳,获得10
6秒前
领导范儿应助汀汀采纳,获得10
6秒前
此木本去一应助tomato采纳,获得10
6秒前
7秒前
所所应助Shinchan采纳,获得10
7秒前
BDH完成签到,获得积分20
8秒前
香菜头发布了新的文献求助10
8秒前
林珍发布了新的文献求助10
8秒前
SQDHZJ发布了新的文献求助10
9秒前
GG波波发布了新的文献求助10
11秒前
吴筮发布了新的文献求助10
11秒前
深情安青应助姜萌萌采纳,获得10
12秒前
niumi190完成签到,获得积分0
13秒前
11231发布了新的文献求助10
13秒前
斯文败类应助平淡夏云采纳,获得10
14秒前
gz发布了新的文献求助10
14秒前
15秒前
科研通AI6应助Shinchan采纳,获得10
15秒前
牛牛最棒完成签到 ,获得积分10
15秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715