Short-Term Electricity Load Forecasting Based on Temporal Fusion Transformer Model

计算机科学 自回归积分移动平均 变压器 循环神经网络 人工神经网络 电力市场 电力系统 期限(时间) 时间序列 人工智能 可靠性工程 实时计算 机器学习 功率(物理) 工程类 电压 物理 电气工程 量子力学
作者
Pham Canh Huy,Minh Nguyen,Nguyen Dang Tien,Tao Thi Quynh Anh
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 106296-106304 被引量:31
标识
DOI:10.1109/access.2022.3211941
摘要

Electricity load forecasting plays an important role in the operation of power systems. Inaccurate forecast would reduce the safety of power supply and affect the economic and social activities as well as national defense and security. In addition, the forecast results also support decision-making on electricity generation and market transactions. Traditional methods such as AR, ARIMA, SARIMA have been widely used to forecast short term electricity load. Recently, load forecasting based on artificial and deep neural networks have shown significant accuracy improvement over traditional statistical models. In this research, a novel recurrent neural network named temporal fusion transformer (TFT) is used to forecast short-term electricity load of Hanoi city. The TFT is a newly developed model and it combines the advantages of several other RNN models such as LSTM and the self-attention mechanism. In addition to historical load data, we use temperature and humidity features, and time features such as calendar month, lunar month, days of the week, hours of the day and holidays. The forecast results of TFT are compared with traditional statistical models as well as well-known RNN models. The compared results show that the proposed method is better than other methods in both MAE and MAPE criteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LHZ发布了新的文献求助10
1秒前
涵寒晗菡完成签到,获得积分10
2秒前
3秒前
jenningseastera应助积极怀蕾采纳,获得10
3秒前
3秒前
4秒前
CipherSage应助李荣耀采纳,获得10
4秒前
鸣笛应助13采纳,获得30
4秒前
6秒前
6秒前
已老实发布了新的文献求助10
8秒前
10秒前
风中兰发布了新的文献求助10
10秒前
hahhh7发布了新的文献求助10
10秒前
12秒前
12秒前
Derson发布了新的文献求助10
13秒前
15秒前
南国之霄发布了新的文献求助10
17秒前
李荣耀发布了新的文献求助10
17秒前
云歇雨住发布了新的文献求助10
18秒前
18秒前
ruirchen发布了新的文献求助10
20秒前
yuechat发布了新的文献求助10
21秒前
21秒前
hahhh7完成签到,获得积分10
21秒前
深情安青应助南国之霄采纳,获得10
22秒前
77给77的求助进行了留言
22秒前
22秒前
卤鸡腿应助xiaomeng采纳,获得20
22秒前
李荣耀完成签到,获得积分10
23秒前
斯文败类应助风中兰采纳,获得10
23秒前
climbingman完成签到,获得积分20
25秒前
糊涂的大门完成签到,获得积分10
25秒前
yk123发布了新的文献求助10
26秒前
zgd发布了新的文献求助10
27秒前
打打应助科研通管家采纳,获得10
29秒前
xiaomou应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
桐桐应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538689
求助须知:如何正确求助?哪些是违规求助? 3973052
关于积分的说明 12307737
捐赠科研通 3639863
什么是DOI,文献DOI怎么找? 2004161
邀请新用户注册赠送积分活动 1039575
科研通“疑难数据库(出版商)”最低求助积分说明 928856