Short-Term Electricity Load Forecasting Based on Temporal Fusion Transformer Model

计算机科学 自回归积分移动平均 变压器 循环神经网络 人工神经网络 电力市场 电力系统 期限(时间) 时间序列 人工智能 可靠性工程 实时计算 机器学习 功率(物理) 工程类 电压 物理 电气工程 量子力学
作者
Pham Canh Huy,Minh Nguyen,Nguyen Dang Tien,Tao Thi Quynh Anh
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 106296-106304 被引量:31
标识
DOI:10.1109/access.2022.3211941
摘要

Electricity load forecasting plays an important role in the operation of power systems. Inaccurate forecast would reduce the safety of power supply and affect the economic and social activities as well as national defense and security. In addition, the forecast results also support decision-making on electricity generation and market transactions. Traditional methods such as AR, ARIMA, SARIMA have been widely used to forecast short term electricity load. Recently, load forecasting based on artificial and deep neural networks have shown significant accuracy improvement over traditional statistical models. In this research, a novel recurrent neural network named temporal fusion transformer (TFT) is used to forecast short-term electricity load of Hanoi city. The TFT is a newly developed model and it combines the advantages of several other RNN models such as LSTM and the self-attention mechanism. In addition to historical load data, we use temperature and humidity features, and time features such as calendar month, lunar month, days of the week, hours of the day and holidays. The forecast results of TFT are compared with traditional statistical models as well as well-known RNN models. The compared results show that the proposed method is better than other methods in both MAE and MAPE criteria.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过的丹烟完成签到,获得积分10
1秒前
2秒前
科研通AI2S应助闲听花落采纳,获得10
3秒前
3秒前
领导范儿应助aulinwl采纳,获得10
3秒前
优美紫槐发布了新的文献求助10
5秒前
dinglingling完成签到 ,获得积分10
6秒前
6秒前
Shamray发布了新的文献求助30
7秒前
www完成签到,获得积分10
7秒前
WTX发布了新的文献求助10
8秒前
yadikar发布了新的文献求助10
8秒前
情怀应助小周采纳,获得10
8秒前
丘比特应助小周采纳,获得10
8秒前
Owen应助小周采纳,获得10
8秒前
科目三应助小周采纳,获得10
8秒前
Ava应助小周采纳,获得10
8秒前
Hello应助小周采纳,获得10
8秒前
赘婿应助小周采纳,获得10
8秒前
今后应助小周采纳,获得10
9秒前
香蕉觅云应助小周采纳,获得10
9秒前
Ava应助两酒窝采纳,获得10
9秒前
忐忑的代梅完成签到 ,获得积分10
12秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
英姑应助小周采纳,获得10
16秒前
慕青应助小周采纳,获得10
16秒前
优美紫槐应助小周采纳,获得10
16秒前
科目三应助小周采纳,获得10
16秒前
可爱的函函应助小周采纳,获得10
16秒前
大模型应助小周采纳,获得10
16秒前
所所应助小周采纳,获得10
16秒前
丘比特应助小周采纳,获得10
16秒前
顾矜应助小周采纳,获得10
16秒前
FashionBoy应助小周采纳,获得10
16秒前
赘婿应助静好采纳,获得10
16秒前
shaft完成签到,获得积分10
18秒前
18秒前
斯文败类应助优美紫槐采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605491
求助须知:如何正确求助?哪些是违规求助? 4690014
关于积分的说明 14862041
捐赠科研通 4701426
什么是DOI,文献DOI怎么找? 2542082
邀请新用户注册赠送积分活动 1507751
关于科研通互助平台的介绍 1472105