Short-Term Electricity Load Forecasting Based on Temporal Fusion Transformer Model

计算机科学 自回归积分移动平均 变压器 循环神经网络 人工神经网络 电力市场 电力系统 期限(时间) 时间序列 人工智能 可靠性工程 实时计算 机器学习 功率(物理) 工程类 电压 物理 电气工程 量子力学
作者
Pham Canh Huy,Minh Nguyen,Nguyen Dang Tien,Tao Thi Quynh Anh
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 106296-106304 被引量:31
标识
DOI:10.1109/access.2022.3211941
摘要

Electricity load forecasting plays an important role in the operation of power systems. Inaccurate forecast would reduce the safety of power supply and affect the economic and social activities as well as national defense and security. In addition, the forecast results also support decision-making on electricity generation and market transactions. Traditional methods such as AR, ARIMA, SARIMA have been widely used to forecast short term electricity load. Recently, load forecasting based on artificial and deep neural networks have shown significant accuracy improvement over traditional statistical models. In this research, a novel recurrent neural network named temporal fusion transformer (TFT) is used to forecast short-term electricity load of Hanoi city. The TFT is a newly developed model and it combines the advantages of several other RNN models such as LSTM and the self-attention mechanism. In addition to historical load data, we use temperature and humidity features, and time features such as calendar month, lunar month, days of the week, hours of the day and holidays. The forecast results of TFT are compared with traditional statistical models as well as well-known RNN models. The compared results show that the proposed method is better than other methods in both MAE and MAPE criteria.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助四月采纳,获得10
刚刚
刚刚
刚刚
Ben发布了新的文献求助10
刚刚
知行合一发布了新的文献求助10
刚刚
SBQHY完成签到,获得积分10
1秒前
三颗星南极三完成签到 ,获得积分10
1秒前
天真绿发布了新的文献求助10
1秒前
阔达如柏完成签到,获得积分10
1秒前
雪白炎彬完成签到,获得积分10
2秒前
栀觉发布了新的文献求助10
2秒前
3秒前
大意的白翠完成签到,获得积分10
3秒前
meteor完成签到,获得积分10
4秒前
梁洲发布了新的文献求助20
4秒前
中森明菜完成签到,获得积分10
4秒前
斯文败类应助200308156313采纳,获得10
4秒前
淡然的初阳完成签到,获得积分10
5秒前
TL关注了科研通微信公众号
5秒前
6秒前
smile完成签到,获得积分10
6秒前
7秒前
fire完成签到 ,获得积分10
7秒前
sunyanghu369发布了新的文献求助10
7秒前
7秒前
7秒前
好运粥完成签到 ,获得积分10
8秒前
urtp完成签到,获得积分10
8秒前
张琨完成签到 ,获得积分10
9秒前
9秒前
10秒前
万能图书馆应助胖胖桑采纳,获得10
10秒前
一个人的朝圣完成签到,获得积分10
10秒前
10秒前
我是老大应助冀1采纳,获得10
10秒前
英姑应助channy采纳,获得10
11秒前
Di发布了新的文献求助10
12秒前
FashionBoy应助馨然美丽采纳,获得10
12秒前
scyljq完成签到,获得积分10
13秒前
上官若男应助1234采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271