DeepRTAlign: toward accurate retention time alignment for large cohort mass spectrometry data analysis

计算机科学 人工智能 蛋白质组学 分类器(UML) 标杆管理 深度学习 质谱法 代谢组学 模式识别(心理学) 数据挖掘 机器学习 化学 色谱法 生物化学 基因 业务 营销
作者
Yi Liu,Yingying Zhang,Yuanjun Zhai,Fuchu He,Ying–Hui Zhu,Cheng Chang
标识
DOI:10.1101/2022.12.24.521877
摘要

Abstract Retention time (RT) alignment is one of the crucial steps in liquid chromatography-mass spectrometry (LC-MS)-based proteomic and metabolomic experiments, especially for large cohort studies, and it can be achieved using computational methods; the most popular methods are the warping function method and the direct matching method. However, the existing tools can hardly handle monotonic and non-monotonic RT shifts simultaneously. To overcome this, we developed a deep learning-based RT alignment tool, DeepRTAlign, for large cohort LC-MS data analysis. It first performs a coarse alignment by calculating the average time shift between any two samples and then uses RT and m/z as the main features to train its deep learning-based model. We demonstrate that DeepRTAlign has improved performances, especially when handling complex samples, by benchmarking it against current state-of-the-art approaches on 19 real-world proteomic and metabolomic datasets and the corresponding simulated datasets. Benchmarked on a dataset with known fold changes, the results showed that DeepRTAlign can improve the identification sensitivity of MS data without compromising the quantitative accuracy. Furthermore, using the MS features aligned by DeepRTAlign in a large cohort, we trained a classifier of 15 features to predict the early recurrence of hepatocellular carcinoma. The features were validated on an independent cohort using targeted proteomics with an AUC of 0.833. Being flexible and robust with four different feature extraction tools, DeepRTAlign provides an advanced solution to RT alignment in large cohort LC-MS data, which is currently one of the bottlenecks in proteomics and metabolomics research, especially for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳娩完成签到,获得积分10
刚刚
大模型应助oasis采纳,获得10
1秒前
2秒前
大胆的渊思完成签到 ,获得积分10
3秒前
英姑应助xiaoxiao采纳,获得10
3秒前
Dream完成签到 ,获得积分10
3秒前
胡子完成签到,获得积分10
5秒前
顾矜应助Goldensun采纳,获得30
5秒前
英姑应助WLL采纳,获得10
6秒前
不安的嘉懿完成签到,获得积分10
7秒前
zhh发布了新的文献求助10
7秒前
妮妮完成签到 ,获得积分10
9秒前
9秒前
幻幻完成签到 ,获得积分10
12秒前
大众脸完成签到,获得积分10
13秒前
yanjing_515完成签到,获得积分10
14秒前
Zhanghao发布了新的文献求助10
14秒前
YY完成签到,获得积分10
15秒前
爱静静应助先玩了玉采纳,获得20
15秒前
麦乐兴完成签到,获得积分10
16秒前
16秒前
18秒前
毛通完成签到,获得积分10
18秒前
19秒前
20秒前
WLL完成签到,获得积分20
21秒前
完美世界应助Zhanghao采纳,获得10
21秒前
22秒前
Xinne发布了新的文献求助10
23秒前
一只小羊发布了新的文献求助150
24秒前
万半梅发布了新的文献求助10
24秒前
lzj001983完成签到,获得积分10
25秒前
幽默的青槐完成签到,获得积分10
25秒前
26秒前
sa完成签到 ,获得积分10
27秒前
先玩了玉完成签到,获得积分20
27秒前
优秀不愁发布了新的文献求助10
28秒前
AFF发布了新的文献求助10
29秒前
30秒前
研友_LOoomL发布了新的文献求助10
30秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266456
求助须知:如何正确求助?哪些是违规求助? 2906193
关于积分的说明 8337132
捐赠科研通 2576662
什么是DOI,文献DOI怎么找? 1400623
科研通“疑难数据库(出版商)”最低求助积分说明 654802
邀请新用户注册赠送积分活动 633690