清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DeepRTAlign: toward accurate retention time alignment for large cohort mass spectrometry data analysis

计算机科学 人工智能 蛋白质组学 分类器(UML) 标杆管理 深度学习 质谱法 代谢组学 模式识别(心理学) 数据挖掘 机器学习 化学 色谱法 营销 业务 生物化学 基因
作者
Yi Liu,Yingying Zhang,Yuanjun Zhai,Fuchu He,Ying–Hui Zhu,Cheng Chang
标识
DOI:10.1101/2022.12.24.521877
摘要

Abstract Retention time (RT) alignment is one of the crucial steps in liquid chromatography-mass spectrometry (LC-MS)-based proteomic and metabolomic experiments, especially for large cohort studies, and it can be achieved using computational methods; the most popular methods are the warping function method and the direct matching method. However, the existing tools can hardly handle monotonic and non-monotonic RT shifts simultaneously. To overcome this, we developed a deep learning-based RT alignment tool, DeepRTAlign, for large cohort LC-MS data analysis. It first performs a coarse alignment by calculating the average time shift between any two samples and then uses RT and m/z as the main features to train its deep learning-based model. We demonstrate that DeepRTAlign has improved performances, especially when handling complex samples, by benchmarking it against current state-of-the-art approaches on 19 real-world proteomic and metabolomic datasets and the corresponding simulated datasets. Benchmarked on a dataset with known fold changes, the results showed that DeepRTAlign can improve the identification sensitivity of MS data without compromising the quantitative accuracy. Furthermore, using the MS features aligned by DeepRTAlign in a large cohort, we trained a classifier of 15 features to predict the early recurrence of hepatocellular carcinoma. The features were validated on an independent cohort using targeted proteomics with an AUC of 0.833. Being flexible and robust with four different feature extraction tools, DeepRTAlign provides an advanced solution to RT alignment in large cohort LC-MS data, which is currently one of the bottlenecks in proteomics and metabolomics research, especially for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
METEOR完成签到 ,获得积分10
14秒前
CipherSage应助飞翔的企鹅采纳,获得10
17秒前
深情安青应助细心的语蓉采纳,获得10
33秒前
六一儿童节完成签到 ,获得积分10
39秒前
40秒前
满意的伊完成签到,获得积分10
43秒前
45秒前
49秒前
qq完成签到 ,获得积分10
51秒前
52秒前
糟糕的翅膀完成签到,获得积分10
53秒前
56秒前
59秒前
量子星尘发布了新的文献求助30
59秒前
1分钟前
1分钟前
科研通AI5应助怪杰采纳,获得10
1分钟前
1分钟前
可夫司机完成签到 ,获得积分10
1分钟前
8R60d8应助飞翔的企鹅采纳,获得10
1分钟前
1分钟前
1分钟前
怪杰发布了新的文献求助10
1分钟前
1分钟前
飞翔的企鹅完成签到,获得积分10
1分钟前
mzhang2完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
LHL发布了新的文献求助10
2分钟前
孤独剑完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
gwbk完成签到,获得积分10
2分钟前
小新小新完成签到 ,获得积分10
2分钟前
miracle完成签到 ,获得积分10
2分钟前
Wang发布了新的文献求助10
2分钟前
2分钟前
SJD完成签到,获得积分0
3分钟前
龙卷风完成签到,获得积分10
3分钟前
sjyu1985完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503095
关于积分的说明 11111294
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802292