DeepRTAlign: toward accurate retention time alignment for large cohort mass spectrometry data analysis

计算机科学 人工智能 蛋白质组学 分类器(UML) 标杆管理 深度学习 质谱法 模式识别(心理学) 数据挖掘 机器学习 化学 色谱法 生物化学 基因 业务 营销
作者
Yi Liu,Yun Yang,Wendong Chen,Feng Shen,Linhai Xie,Yingying Zhang,Yuanjun Zhai,Fuchu He,Yunping Zhu,Cheng Chang
标识
DOI:10.1101/2022.12.24.521877
摘要

Abstract Retention time (RT) alignment is one of the crucial steps in liquid chromatography-mass spectrometry (LC-MS)-based proteomic and metabolomic experiments, especially for large cohort studies, and it can be achieved using computational methods; the most popular methods are the warping function method and the direct matching method. However, the existing tools can hardly handle monotonic and non-monotonic RT shifts simultaneously. To overcome this, we developed a deep learning-based RT alignment tool, DeepRTAlign, for large cohort LC-MS data analysis. It first performs a coarse alignment by calculating the average time shift between any two samples and then uses RT and m/z as the main features to train its deep learning-based model. We demonstrate that DeepRTAlign has improved performances, especially when handling complex samples, by benchmarking it against current state-of-the-art approaches on 19 real-world proteomic and metabolomic datasets and the corresponding simulated datasets. Benchmarked on a dataset with known fold changes, the results showed that DeepRTAlign can improve the identification sensitivity of MS data without compromising the quantitative accuracy. Furthermore, using the MS features aligned by DeepRTAlign in a large cohort, we trained a classifier of 15 features to predict the early recurrence of hepatocellular carcinoma. The features were validated on an independent cohort using targeted proteomics with an AUC of 0.833. Being flexible and robust with four different feature extraction tools, DeepRTAlign provides an advanced solution to RT alignment in large cohort LC-MS data, which is currently one of the bottlenecks in proteomics and metabolomics research, especially for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娜娜子发布了新的文献求助10
刚刚
haojiahui完成签到,获得积分10
刚刚
zzz完成签到,获得积分10
刚刚
柳絮旭完成签到 ,获得积分10
1秒前
ColdPomelo完成签到,获得积分10
1秒前
怕黑晓亦发布了新的文献求助10
1秒前
2秒前
希望天下0贩的0应助zzc采纳,获得10
2秒前
随意发布了新的文献求助10
2秒前
科研通AI6应助学术白银采纳,获得10
3秒前
乖乖隆地洞完成签到,获得积分10
4秒前
ywubronx发布了新的文献求助10
4秒前
小滕同学完成签到 ,获得积分10
4秒前
4秒前
TYJZ发布了新的文献求助10
4秒前
4秒前
苏苏苏完成签到,获得积分10
4秒前
xr完成签到 ,获得积分10
5秒前
5秒前
5秒前
15030358501完成签到 ,获得积分10
5秒前
hhh发布了新的文献求助10
5秒前
十七发布了新的文献求助10
5秒前
玉子市场完成签到,获得积分10
5秒前
陶杨杨完成签到,获得积分10
5秒前
好困发布了新的文献求助10
5秒前
5秒前
5秒前
罗小马完成签到,获得积分10
5秒前
VQM232发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
huanger完成签到,获得积分10
7秒前
努力完成签到,获得积分10
8秒前
aaaa发布了新的文献求助10
8秒前
阿奇霉素完成签到 ,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721