DNA去甲基化
DNA损伤
基底切除修复术
生物
DNA修复
DNA
细胞生物学
DNA糖基化酶
细胞命运测定
内生
核苷酸切除修复
Cas9
增强子
DNA甲基化
遗传学
生物化学
清脆的
转录因子
基因
基因表达
作者
Dongpeng Wang,Wei Wu,Elsa Callén,Raphael Pavani,Nicholas Zolnerowich,Srikanth Kodali,Dali Zong,Nancy Wong,Santiago Noriega,William J. Nathan,Gabriel Matos‐Rodrigues,Raj Chari,Michael J. Kruhlak,Ferenc Livák,Michael E. Ward,Keith W. Caldecott,Bruno Di Stefano,André Nussenzweig
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2022-12-01
卷期号:378 (6623): 983-989
被引量:58
标识
DOI:10.1126/science.add9838
摘要
Neurons harbor high levels of single-strand DNA breaks (SSBs) that are targeted to neuronal enhancers, but the source of this endogenous damage remains unclear. Using two systems of postmitotic lineage specification—induced pluripotent stem cell–derived neurons and transdifferentiated macrophages—we show that thymidine DNA glycosylase (TDG)–driven excision of methylcytosines oxidized with ten-eleven translocation enzymes (TET) is a source of SSBs. Although macrophage differentiation favors short-patch base excision repair to fill in single-nucleotide gaps, neurons also frequently use the long-patch subpathway. Disrupting this gap-filling process using anti-neoplastic cytosine analogs triggers a DNA damage response and neuronal cell death, which is dependent on TDG. Thus, TET-mediated active DNA demethylation promotes endogenous DNA damage, a process that normally safeguards cell identity but can also provoke neurotoxicity after anticancer treatments.
科研通智能强力驱动
Strongly Powered by AbleSci AI