计算机科学
协同过滤
推荐系统
算法
互联网隐私
社会化媒体
万维网
标识
DOI:10.1177/00222437221134237
摘要
Recommender systems on online platforms are often accused of polarizing user attention and consumption. The authors examine this phenomenon using a quasi-experiment conducted by Zhihu, the largest online knowledge-sharing platform (or Q&A community) in China. Zhihu originally used a content-based filtering algorithm, which recommends content to users on the basis of the topics to which each user has subscribed. After more than a year, Zhihu moved to a social filtering algorithm, which recommends content with which users’ social connections are already engaged. The authors find that this algorithm change increased the creation of social ties by approximately 15% but decreased question subscriptions by 20% and answer contributions by 23%. The authors show that users’ increased social interests mainly involved following popular users, leading to a greater concentration of social interests on the platform. However, users’ topical interests became less concentrated, as popular topics received significantly fewer subscribers than unpopular topics. The authors explain these findings by exploring the underlying mechanism. They show that compared with content-based filtering algorithms, social filtering algorithms are more likely to expose general users to content consumed by their followees, who are more interested in niche topics than general users are.
科研通智能强力驱动
Strongly Powered by AbleSci AI