The Daily Me Versus the Daily Others: How Do Recommendation Algorithms Change User Interests? Evidence from a Knowledge-Sharing Platform

计算机科学 协同过滤 推荐系统 算法 互联网隐私 社会化媒体 万维网
作者
Jia Liu,Ziwei Cong
出处
期刊:Journal of Marketing Research [SAGE]
卷期号:60 (4): 767-791 被引量:8
标识
DOI:10.1177/00222437221134237
摘要

Recommender systems on online platforms are often accused of polarizing user attention and consumption. The authors examine this phenomenon using a quasi-experiment conducted by Zhihu, the largest online knowledge-sharing platform (or Q&A community) in China. Zhihu originally used a content-based filtering algorithm, which recommends content to users on the basis of the topics to which each user has subscribed. After more than a year, Zhihu moved to a social filtering algorithm, which recommends content with which users’ social connections are already engaged. The authors find that this algorithm change increased the creation of social ties by approximately 15% but decreased question subscriptions by 20% and answer contributions by 23%. The authors show that users’ increased social interests mainly involved following popular users, leading to a greater concentration of social interests on the platform. However, users’ topical interests became less concentrated, as popular topics received significantly fewer subscribers than unpopular topics. The authors explain these findings by exploring the underlying mechanism. They show that compared with content-based filtering algorithms, social filtering algorithms are more likely to expose general users to content consumed by their followees, who are more interested in niche topics than general users are.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
AMAME12发布了新的文献求助10
1秒前
2秒前
3秒前
林林发布了新的文献求助10
3秒前
马骁发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
为神武完成签到,获得积分10
5秒前
孤独尔安完成签到 ,获得积分10
6秒前
Hello应助lalala采纳,获得10
7秒前
今后应助嘎嘎嘎采纳,获得10
7秒前
esdeath发布了新的文献求助10
8秒前
ZHEN发布了新的文献求助10
8秒前
ping777755完成签到,获得积分10
8秒前
科研通AI2S应助又甘又刻采纳,获得10
10秒前
10秒前
sweet发布了新的文献求助20
11秒前
Loris完成签到,获得积分10
11秒前
青黛给青黛的求助进行了留言
12秒前
今后应助然然采纳,获得10
12秒前
13秒前
李爱国应助D33sama采纳,获得10
13秒前
WYR完成签到 ,获得积分10
13秒前
rosalieshi完成签到,获得积分0
14秒前
15秒前
15秒前
15秒前
16秒前
马小帅发布了新的文献求助30
16秒前
16秒前
等待秋寒完成签到,获得积分10
18秒前
ZHEN完成签到,获得积分10
18秒前
喜静完成签到,获得积分10
18秒前
小黑驴完成签到 ,获得积分10
18秒前
JK157完成签到,获得积分10
18秒前
18秒前
Loris发布了新的文献求助10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134618
求助须知:如何正确求助?哪些是违规求助? 2785501
关于积分的说明 7772725
捐赠科研通 2441172
什么是DOI,文献DOI怎么找? 1297862
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600813