Remote sensing‐based retrieval of soil moisture content using stacking ensemble learning models

含水量 随机森林 环境科学 遥感 机器学习 计算机科学 雷达 集成学习 Lasso(编程语言) 堆积 人工智能 地质学 岩土工程 物理 万维网 电信 核磁共振
作者
Sinan Wang,Yingjie Wu,Ruiping Li,Xiuqing Wang
出处
期刊:Land Degradation & Development [Wiley]
卷期号:34 (3): 911-925 被引量:8
标识
DOI:10.1002/ldr.4505
摘要

Abstract Machine learning combined with multisource remote sensing data to assess soil moisture content (SMC) has attracted considerable attention in SMC studies, but the retrieval results still remain uncertain. The purpose of this study is to combine multiple single machine learning models with integrated learning algorithms and propose an SMC retrieval method based on multiple differentiated models under a stacking integrated learning architecture. First, 19 factors, including: radar backscattering coefficient, vegetation index, and drought index, that affect SMC were extracted from SENTINEL‐1, LANDSAT, and terrain factors. Those with the highest importance scores were selected as retrieval factors using the Boruta algorithm combined with four single machine learning methods—classified regression tree, random forest, gradient boosting decision tree (GBDT), and extreme random tree. In addition, the two stacking ensemble models using least absolute shrinkage and selection operator (LASSO) and the generalized boosted regression model (GBM) were tested and applied to build the most reliable and accurate estimation model. The results showed that radar backscattering coefficient, temperature, vegetation drought index, land surface temperature, enhanced vegetation index, and solar local incident angle were the most important environmental variables for soil moisture retrieval. A comparison of the four machine learning methods in April and August showed that the GBDT model revealed the highest SMC retrieval accuracy, with root mean square error values of 1.87% and 1.64%, respectively. The stacking models were more accurate than the optimal single machine learning model, especially when using GBM. The multifactor integrated model constructed using spectral indices, radar backscatter coefficients, and topographic data exhibited high accuracy in soil surface moisture retrieval in an arid zone, providing a reference for land desertification studies and ecological environment management in the study region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
gsj发布了新的文献求助10
2秒前
3秒前
所所应助wonder123采纳,获得10
3秒前
4秒前
4秒前
4秒前
田様应助忆茶戏采纳,获得10
4秒前
wss完成签到,获得积分10
5秒前
5秒前
5秒前
song_song发布了新的文献求助10
6秒前
桐桐应助贪玩的野狍子采纳,获得50
6秒前
路小黑发布了新的文献求助10
7秒前
wss发布了新的文献求助10
7秒前
UsihaGuwalgiya完成签到,获得积分10
8秒前
8秒前
9秒前
独特乘云发布了新的文献求助10
9秒前
10秒前
yyyyxxxg完成签到,获得积分10
11秒前
12秒前
健壮的花生zzz完成签到,获得积分10
13秒前
13秒前
Michael-布莱恩特完成签到,获得积分10
14秒前
323431完成签到,获得积分10
15秒前
烟花应助郭小宝采纳,获得10
15秒前
lzx发布了新的文献求助10
16秒前
LJF完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
古月发布了新的文献求助10
17秒前
麦子发布了新的文献求助10
18秒前
传奇3应助孙传彬采纳,获得10
18秒前
所所应助songvv采纳,获得10
19秒前
Chris完成签到,获得积分10
20秒前
JamesPei应助尊敬寒松采纳,获得10
21秒前
ZYH完成签到 ,获得积分10
21秒前
21秒前
痴情的茈发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174