Remote sensing‐based retrieval of soil moisture content using stacking ensemble learning models

含水量 随机森林 环境科学 遥感 机器学习 计算机科学 雷达 集成学习 Lasso(编程语言) 堆积 人工智能 地质学 岩土工程 电信 万维网 物理 核磁共振
作者
Sinan Wang,Yingjie Wu,Ruiping Li,Xiuqing Wang
出处
期刊:Land Degradation & Development [Wiley]
卷期号:34 (3): 911-925 被引量:8
标识
DOI:10.1002/ldr.4505
摘要

Abstract Machine learning combined with multisource remote sensing data to assess soil moisture content (SMC) has attracted considerable attention in SMC studies, but the retrieval results still remain uncertain. The purpose of this study is to combine multiple single machine learning models with integrated learning algorithms and propose an SMC retrieval method based on multiple differentiated models under a stacking integrated learning architecture. First, 19 factors, including: radar backscattering coefficient, vegetation index, and drought index, that affect SMC were extracted from SENTINEL‐1, LANDSAT, and terrain factors. Those with the highest importance scores were selected as retrieval factors using the Boruta algorithm combined with four single machine learning methods—classified regression tree, random forest, gradient boosting decision tree (GBDT), and extreme random tree. In addition, the two stacking ensemble models using least absolute shrinkage and selection operator (LASSO) and the generalized boosted regression model (GBM) were tested and applied to build the most reliable and accurate estimation model. The results showed that radar backscattering coefficient, temperature, vegetation drought index, land surface temperature, enhanced vegetation index, and solar local incident angle were the most important environmental variables for soil moisture retrieval. A comparison of the four machine learning methods in April and August showed that the GBDT model revealed the highest SMC retrieval accuracy, with root mean square error values of 1.87% and 1.64%, respectively. The stacking models were more accurate than the optimal single machine learning model, especially when using GBM. The multifactor integrated model constructed using spectral indices, radar backscatter coefficients, and topographic data exhibited high accuracy in soil surface moisture retrieval in an arid zone, providing a reference for land desertification studies and ecological environment management in the study region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助科研通管家采纳,获得30
刚刚
刚刚
LY完成签到,获得积分10
1秒前
枫于林完成签到 ,获得积分10
1秒前
1秒前
砰砰砰砰啪!完成签到 ,获得积分10
2秒前
lili完成签到 ,获得积分10
4秒前
xzh完成签到,获得积分10
4秒前
ddsyg126完成签到,获得积分10
5秒前
共享精神应助李小新采纳,获得10
6秒前
小鲤鱼吃大菠萝完成签到,获得积分10
6秒前
xuex1发布了新的文献求助10
6秒前
cc发布了新的文献求助50
8秒前
dd完成签到 ,获得积分10
10秒前
天天完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
yuki完成签到,获得积分10
12秒前
依然灬聆听完成签到,获得积分10
13秒前
13秒前
小朱完成签到,获得积分10
14秒前
陈一一完成签到 ,获得积分10
14秒前
纸芯完成签到 ,获得积分10
15秒前
NINI完成签到 ,获得积分10
15秒前
蜂鸟5156完成签到,获得积分10
15秒前
溜溜发布了新的文献求助10
17秒前
VDC发布了新的文献求助10
18秒前
Lyuemei完成签到 ,获得积分10
19秒前
恬恬完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
21秒前
热依汗古丽完成签到,获得积分10
21秒前
HX发布了新的文献求助20
21秒前
22秒前
qian完成签到 ,获得积分10
23秒前
23秒前
Zzzzzzzzzzz发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808