Remote sensing‐based retrieval of soil moisture content using stacking ensemble learning models

含水量 随机森林 环境科学 遥感 机器学习 计算机科学 雷达 集成学习 Lasso(编程语言) 堆积 人工智能 地质学 岩土工程 物理 万维网 电信 核磁共振
作者
Sinan Wang,Yingjie Wu,Ruiping Li,Xiuqing Wang
出处
期刊:Land Degradation & Development [Wiley]
卷期号:34 (3): 911-925 被引量:8
标识
DOI:10.1002/ldr.4505
摘要

Abstract Machine learning combined with multisource remote sensing data to assess soil moisture content (SMC) has attracted considerable attention in SMC studies, but the retrieval results still remain uncertain. The purpose of this study is to combine multiple single machine learning models with integrated learning algorithms and propose an SMC retrieval method based on multiple differentiated models under a stacking integrated learning architecture. First, 19 factors, including: radar backscattering coefficient, vegetation index, and drought index, that affect SMC were extracted from SENTINEL‐1, LANDSAT, and terrain factors. Those with the highest importance scores were selected as retrieval factors using the Boruta algorithm combined with four single machine learning methods—classified regression tree, random forest, gradient boosting decision tree (GBDT), and extreme random tree. In addition, the two stacking ensemble models using least absolute shrinkage and selection operator (LASSO) and the generalized boosted regression model (GBM) were tested and applied to build the most reliable and accurate estimation model. The results showed that radar backscattering coefficient, temperature, vegetation drought index, land surface temperature, enhanced vegetation index, and solar local incident angle were the most important environmental variables for soil moisture retrieval. A comparison of the four machine learning methods in April and August showed that the GBDT model revealed the highest SMC retrieval accuracy, with root mean square error values of 1.87% and 1.64%, respectively. The stacking models were more accurate than the optimal single machine learning model, especially when using GBM. The multifactor integrated model constructed using spectral indices, radar backscatter coefficients, and topographic data exhibited high accuracy in soil surface moisture retrieval in an arid zone, providing a reference for land desertification studies and ecological environment management in the study region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
余慵慵完成签到 ,获得积分10
1秒前
奋斗的小土豆完成签到,获得积分10
2秒前
ZJJ静完成签到,获得积分10
2秒前
邢大宝完成签到,获得积分10
3秒前
尔玉完成签到 ,获得积分10
5秒前
memo完成签到,获得积分10
5秒前
5秒前
一路芬芳完成签到,获得积分20
5秒前
7秒前
一一一应助songvv采纳,获得10
7秒前
7秒前
SciKid524完成签到 ,获得积分10
9秒前
科研通AI2S应助hhh采纳,获得10
9秒前
QWE完成签到,获得积分10
9秒前
赛赛完成签到 ,获得积分10
11秒前
tinydog完成签到,获得积分10
13秒前
长情琦完成签到,获得积分10
13秒前
Mercury完成签到 ,获得积分10
15秒前
zx完成签到 ,获得积分10
16秒前
Dearjw1655完成签到,获得积分10
17秒前
123完成签到 ,获得积分10
17秒前
圆圆完成签到 ,获得积分10
18秒前
22秒前
哭泣笑柳发布了新的文献求助10
23秒前
张宁波完成签到,获得积分10
23秒前
OeO完成签到 ,获得积分10
23秒前
macboy完成签到,获得积分10
25秒前
biubiu完成签到,获得积分10
26秒前
咸鱼之王完成签到,获得积分10
27秒前
比比谁的速度快给ljm的求助进行了留言
27秒前
Can完成签到,获得积分10
28秒前
hhh完成签到,获得积分10
28秒前
qqq发布了新的文献求助10
28秒前
E0702完成签到,获得积分10
28秒前
30秒前
lin完成签到 ,获得积分20
31秒前
乐乐应助科研通管家采纳,获得10
34秒前
34秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022