亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Remote sensing‐based retrieval of soil moisture content using stacking ensemble learning models

含水量 随机森林 环境科学 遥感 机器学习 计算机科学 雷达 集成学习 Lasso(编程语言) 堆积 人工智能 地质学 岩土工程 电信 万维网 物理 核磁共振
作者
Sinan Wang,Yingjie Wu,Ruiping Li,Xiuqing Wang
出处
期刊:Land Degradation & Development [Wiley]
卷期号:34 (3): 911-925 被引量:8
标识
DOI:10.1002/ldr.4505
摘要

Abstract Machine learning combined with multisource remote sensing data to assess soil moisture content (SMC) has attracted considerable attention in SMC studies, but the retrieval results still remain uncertain. The purpose of this study is to combine multiple single machine learning models with integrated learning algorithms and propose an SMC retrieval method based on multiple differentiated models under a stacking integrated learning architecture. First, 19 factors, including: radar backscattering coefficient, vegetation index, and drought index, that affect SMC were extracted from SENTINEL‐1, LANDSAT, and terrain factors. Those with the highest importance scores were selected as retrieval factors using the Boruta algorithm combined with four single machine learning methods—classified regression tree, random forest, gradient boosting decision tree (GBDT), and extreme random tree. In addition, the two stacking ensemble models using least absolute shrinkage and selection operator (LASSO) and the generalized boosted regression model (GBM) were tested and applied to build the most reliable and accurate estimation model. The results showed that radar backscattering coefficient, temperature, vegetation drought index, land surface temperature, enhanced vegetation index, and solar local incident angle were the most important environmental variables for soil moisture retrieval. A comparison of the four machine learning methods in April and August showed that the GBDT model revealed the highest SMC retrieval accuracy, with root mean square error values of 1.87% and 1.64%, respectively. The stacking models were more accurate than the optimal single machine learning model, especially when using GBM. The multifactor integrated model constructed using spectral indices, radar backscatter coefficients, and topographic data exhibited high accuracy in soil surface moisture retrieval in an arid zone, providing a reference for land desertification studies and ecological environment management in the study region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助傅夜山采纳,获得10
6秒前
doctor发布了新的文献求助10
7秒前
小二郎应助jyy采纳,获得20
30秒前
doctor完成签到,获得积分10
50秒前
上官若男应助LUNWENREQUEST采纳,获得10
1分钟前
1分钟前
LUNWENREQUEST发布了新的文献求助10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
2分钟前
田様应助LUNWENREQUEST采纳,获得10
2分钟前
万能图书馆应助千里草采纳,获得10
2分钟前
落落完成签到 ,获得积分0
2分钟前
2分钟前
傅夜山发布了新的文献求助10
2分钟前
LUNWENREQUEST发布了新的文献求助10
2分钟前
2分钟前
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
傅夜山发布了新的文献求助10
2分钟前
LUNWENREQUEST完成签到,获得积分10
2分钟前
傅夜山发布了新的文献求助30
2分钟前
傅夜山发布了新的文献求助10
3分钟前
传奇3应助傅夜山采纳,获得10
3分钟前
傅夜山发布了新的文献求助30
4分钟前
jyy发布了新的文献求助10
4分钟前
4分钟前
傅夜山发布了新的文献求助10
4分钟前
4分钟前
Jessica英语好完成签到 ,获得积分10
4分钟前
JL完成签到 ,获得积分10
5分钟前
Georgechan完成签到,获得积分10
5分钟前
6分钟前
jyy发布了新的文献求助20
6分钟前
傅夜山发布了新的文献求助30
6分钟前
乐乐应助傅夜山采纳,获得10
7分钟前
科研通AI2S应助卓头OvQ采纳,获得10
8分钟前
9分钟前
完美世界应助wangsiheng采纳,获得10
9分钟前
未来可期完成签到,获得积分10
10分钟前
10分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171568
求助须知:如何正确求助?哪些是违规求助? 2822431
关于积分的说明 7939235
捐赠科研通 2483077
什么是DOI,文献DOI怎么找? 1322952
科研通“疑难数据库(出版商)”最低求助积分说明 633826
版权声明 602647