Myocardial ischemia-reperfusion (I/R) injury is a cause of high post-interventional mortality in patients with acute myocardial infarction (MI). Cerebral dopamine neurotrophic factor (CDNF) is an endoplasmic reticulum (ER) resident protein, and its expression and secretion are induced when tissues and cells are subjected to hypoxia, ischemia, or traumatic injury. As a novel cardiomyokine, CDNF plays a crucial role in the progression of myocardial I/R injury. In our previous study, we reported that the overexpression of CDNF inhibited tunicamycin-induced H9C2 cell apoptosis. Moreover, there is a unique N-glycosylation site at Asn57 in the CDNF protein, which likely affects its function in H9C2 cells. However, the detailed impact remains unexplored. In our current study, we observed elevated levels of CDNF in the serum of acute MI patients, myocardial tissue of I/R model mice, and H/R model H9C2 cells. To detect the effect of N-glycosylation on the CDNF protein, we constructed an Asn57 mutant (N57A) plasmid and found that the N57A protein presented similar intracellular localization to those of the wild-type CDNF protein. However, the N57A protein demonstrated reduced stability, and the mutant protein could not protect H/R-induced H9C2 cells from apoptosis. Moreover, this process may occur through the downregulation of the PI3K/Akt pathway. Therefore, N-glycosylation of CDNF may be essential for protein stability and its protective role in H/R injury in H9C2 cells.