A Self‐powered Tennis Training System Based on Micro‐Nano Structured Sensing Yarn Arrays

材料科学 纳米- 纱线 纳米技术 培训(气象学) 复合材料 物理 气象学
作者
Qian Chen,Duo Xu,Yan Yan,Zhan Qu,Haoyue Zhao,Xinyu Li,Yuying Cao,Chenhong Lang,Wasim Akram,Zhe Sun,Li Niu,Jian Fang
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202414395
摘要

Abstract Wearable sensing devices can reliably track players' mobility, revolutionizing sports training. However, current sensing electronics face challenges due to their complex structures, battery dependence, and unreliable sensing signals. Here, a tennis training system is demonstrated using machine learning based on elastic self‐powered sensing yarns. By employing a simple and effective strategy, piezoelectric nanofibers and triboelectric materials are integrated into a single yarn, enabling the simultaneous translation of both triboelectric and piezoelectric signals. Additionally, these yarns exhibit outstanding processability, allowing them to be machine‐knitted into self‐powered sensing fabrics. Due to their great sensitivity, these sensing yarns and fabrics may detect human movement with great precision. Machine learning algorithms can classify and interpret these signals to recognize various human motions. The developed tennis training system aims to maximize its benefits and provide comprehensive training for both players and coaches. This work enhances the applicability of self‐powered sensing systems in smart sports monitoring and training, advancing the field of intelligent sports training.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
ZihuiCCCC发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
7秒前
7秒前
朴实香露发布了新的文献求助10
7秒前
10秒前
12秒前
xiaofei完成签到 ,获得积分10
13秒前
Ekko发布了新的文献求助10
13秒前
14秒前
15秒前
冷酷秋柳完成签到,获得积分20
16秒前
17秒前
17秒前
科研通AI2S应助QING采纳,获得10
18秒前
黑九发布了新的文献求助20
18秒前
Gavin发布了新的文献求助10
18秒前
冷酷秋柳发布了新的文献求助30
21秒前
满意的夜柳完成签到,获得积分10
21秒前
美好斓发布了新的文献求助10
21秒前
Surly完成签到,获得积分10
23秒前
syz66628发布了新的文献求助30
23秒前
Ls完成签到 ,获得积分10
23秒前
kiki完成签到,获得积分10
24秒前
。。@发布了新的文献求助30
24秒前
25秒前
lch23560应助玫玫采纳,获得30
25秒前
缥缈的洪纲完成签到,获得积分20
27秒前
喜剧人物完成签到,获得积分10
30秒前
wenshuo完成签到,获得积分20
31秒前
32秒前
32秒前
我是老大应助做实验太菜采纳,获得10
32秒前
fengmy应助永政sci采纳,获得10
34秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124648
求助须知:如何正确求助?哪些是违规求助? 2774953
关于积分的说明 7724821
捐赠科研通 2430484
什么是DOI,文献DOI怎么找? 1291144
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323