Iron‐Induced Localized Oxide Path Mechanism Enables Efficient and Stable Water Oxidation

析氧 电催化剂 过电位 贵金属 氧化物 电解 分解水 催化作用 电解水 双金属片 化学 无机化学 化学工程 材料科学 电极 电化学 物理化学 冶金 电解质 工程类 光催化 生物化学
作者
Bohan Yao,Yuting Chen,Yueying Yan,Yang Yang,Huanhuan Xing,Yanchao Xu,Dongxu Jiao,Zhicai Xing,Dewen Wang,Xiurong Yang
出处
期刊:Angewandte Chemie [Wiley]
卷期号:64 (4): e202416141-e202416141 被引量:44
标识
DOI:10.1002/anie.202416141
摘要

Abstract The sluggish reaction kinetics of the anodic oxygen evolution reaction (OER) and the inadequate catalytic performance of non‐noble metal‐based electrocatalysts represent substantial barriers to the development of anion exchange membrane water electrolyzer (AEMWE). This study performed the synthesis of a three‐dimensional (3D) nanoflower‐like electrocatalyst (CFMO) via a simple one‐step method. The substitution of Co with Fe in the structure induces a localized oxide path mechanism (LOPM), facilitating direct O−O radical coupling for enhanced O 2 evolution. The optimized CFMO‐2 electrocatalyst demonstrates superior OER performance, achieving an overpotential of 217 mV at 10 mA cm −2 , alongside exceptional long‐term stability with minimal degradation after 1000 h of operation in 1.0 M KOH. These properties surpass most of conventional noble metal‐based electrocatalysts. Furthermore, the assembled AEMWE system, utilizing CFMO‐2, operates with a cell voltage of 1.65 V to deliver 1.0 A cm −2 . In situ characterizations reveal that, in addition to the traditional adsorbate evolution mechanism (AEM) at isolated Co sites, a new LOPM occurred around the Fe and Co bimetallic sites. First‐principles calculations confirm the LOPM greatly reduced the energy barriers. This work highlights the potential of LOPM for improving the design of non‐noble metal‐based electrocatalysts and the development of AEMWE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巧克力豆丁好好吃完成签到,获得积分10
刚刚
1秒前
王嘉尔完成签到,获得积分10
1秒前
1秒前
霸气的香菇完成签到 ,获得积分10
1秒前
稚生w发布了新的文献求助10
2秒前
冬天的尔安完成签到 ,获得积分10
2秒前
星辰大海应助王啸岳采纳,获得10
2秒前
研友_屈不愁完成签到,获得积分10
2秒前
季节完成签到,获得积分10
3秒前
激情的不弱完成签到,获得积分10
3秒前
gnr2000发布了新的文献求助30
3秒前
4秒前
一支桃桃完成签到,获得积分10
4秒前
4秒前
斯文败类应助chem001采纳,获得10
4秒前
汉堡包应助黎某采纳,获得10
4秒前
大个应助nczpf2010采纳,获得10
4秒前
打打应助梁不二采纳,获得10
5秒前
Owen应助现代宛丝采纳,获得10
5秒前
超级的盼山完成签到 ,获得积分10
5秒前
wanghb616发布了新的文献求助10
5秒前
bkagyin应助木木采纳,获得10
6秒前
拉长的飞莲完成签到,获得积分20
6秒前
sunlianqing1发布了新的文献求助10
6秒前
李爱国应助zzdd采纳,获得10
6秒前
Shadow发布了新的文献求助10
7秒前
BareBear应助正太低音炮采纳,获得10
7秒前
领导范儿应助香蕉凌蝶采纳,获得10
7秒前
7秒前
小二郎应助wuran采纳,获得10
7秒前
7秒前
无花果应助hetao286采纳,获得10
8秒前
8秒前
爆米花应助笑笑采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629618
求助须知:如何正确求助?哪些是违规求助? 4720333
关于积分的说明 14970297
捐赠科研通 4787673
什么是DOI,文献DOI怎么找? 2556435
邀请新用户注册赠送积分活动 1517561
关于科研通互助平台的介绍 1478251