Artificial neural network based on strong track and square root UKF for INS/GNSS intelligence integrated system during GPS outage

全球导航卫星系统应用 计算机科学 人工神经网络 GPS/INS 全球定位系统 卡尔曼滤波器 卫星系统 协方差矩阵 协方差 均方误差 控制理论(社会学) 稳健性(进化) 导航系统 算法 人工智能 辅助全球定位系统 数学 控制(管理) 电信 生物化学 基因 统计 化学
作者
Yi Yang,Xueyao Wang,Nan Zhang,Zhaohui Gao,Yingliang Li
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-64918-4
摘要

Abstract When INS/GNSS (inertial navigation system/global navigation satellite system) integrated system is applied, it will be affected by the insufficient number of visible satellites, and even the satellite signal will be lost completely. At this time, the positioning error of INS accumulates with time, and the navigation accuracy decreases rapidly. Therefore, in order to improve the performance of INS/GNSS integration during the satellite signals interruption, a novel learning algorithm for neural network has been presented and used for intelligence integrated system in this article. First of all, determine the input and output of neural network for intelligent integrated system and a nonlinear model for weighs updating during neural network learning has been established. Then, the neural network learning based on strong tracking and square root UKF (unscented Kalman filter) is proposed for iterations of the nonlinear model. In this algorithm, the square root of the state covariance matrix is used to replace the covariance matrix in the classical UKF to avoid the filter divergence caused by the negative definite state covariance matrix. Meanwhile, the strong tracking coefficient is introduced to adjust the filter gain in real-time and improve the tracking capability to mutation state. Finally, an improved calculation method of strong tracking coefficient is presented to reduce the computational complexity in this algorithm. The results of the simulation test and the field-positioning data show that the proposed learning algorithm could improve the calculation stability and robustness of neural network. Therefore, the error accumulation of INS/GNSS integration is effectively compensated, and then the positioning accuracy of INS/GNSS intelligence integrated system has been improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科学完成签到,获得积分10
刚刚
刚刚
哈哈哈1101关注了科研通微信公众号
刚刚
领导范儿应助大豹子采纳,获得20
刚刚
1秒前
顾矜应助Lekai采纳,获得10
1秒前
量子星尘发布了新的文献求助30
3秒前
3秒前
hszg2333完成签到 ,获得积分10
4秒前
zz发布了新的文献求助10
4秒前
4秒前
杨德帅发布了新的文献求助10
4秒前
西瓜完成签到,获得积分10
5秒前
123发布了新的文献求助10
5秒前
天天快乐应助Lignin采纳,获得10
6秒前
香蕉觅云应助R18686226306采纳,获得10
7秒前
spc68应助谨慎的寒松采纳,获得10
7秒前
spc68应助谨慎的寒松采纳,获得10
7秒前
7秒前
shenjintai发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
星辰坠于海应助lidd采纳,获得20
11秒前
lmlx发布了新的文献求助10
12秒前
QQ发布了新的文献求助10
12秒前
12秒前
聪慧的从丹完成签到 ,获得积分10
13秒前
14秒前
14秒前
14秒前
15秒前
16秒前
Lekai发布了新的文献求助10
16秒前
spc68应助谨慎的寒松采纳,获得10
17秒前
spc68应助谨慎的寒松采纳,获得10
17秒前
spc68应助谨慎的寒松采纳,获得10
18秒前
Maestro_S应助aub采纳,获得10
18秒前
20秒前
gua完成签到,获得积分20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736993
求助须知:如何正确求助?哪些是违规求助? 5369908
关于积分的说明 15334507
捐赠科研通 4880710
什么是DOI,文献DOI怎么找? 2622987
邀请新用户注册赠送积分活动 1571843
关于科研通互助平台的介绍 1528696