Artificial neural network based on strong track and square root UKF for INS/GNSS intelligence integrated system during GPS outage

全球导航卫星系统应用 计算机科学 人工神经网络 GPS/INS 全球定位系统 卡尔曼滤波器 卫星系统 协方差矩阵 协方差 均方误差 控制理论(社会学) 稳健性(进化) 导航系统 算法 人工智能 辅助全球定位系统 数学 控制(管理) 电信 生物化学 基因 统计 化学
作者
Yi Yang,Xueyao Wang,Nan Zhang,Zhaohui Gao,Yingliang Li
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-64918-4
摘要

Abstract When INS/GNSS (inertial navigation system/global navigation satellite system) integrated system is applied, it will be affected by the insufficient number of visible satellites, and even the satellite signal will be lost completely. At this time, the positioning error of INS accumulates with time, and the navigation accuracy decreases rapidly. Therefore, in order to improve the performance of INS/GNSS integration during the satellite signals interruption, a novel learning algorithm for neural network has been presented and used for intelligence integrated system in this article. First of all, determine the input and output of neural network for intelligent integrated system and a nonlinear model for weighs updating during neural network learning has been established. Then, the neural network learning based on strong tracking and square root UKF (unscented Kalman filter) is proposed for iterations of the nonlinear model. In this algorithm, the square root of the state covariance matrix is used to replace the covariance matrix in the classical UKF to avoid the filter divergence caused by the negative definite state covariance matrix. Meanwhile, the strong tracking coefficient is introduced to adjust the filter gain in real-time and improve the tracking capability to mutation state. Finally, an improved calculation method of strong tracking coefficient is presented to reduce the computational complexity in this algorithm. The results of the simulation test and the field-positioning data show that the proposed learning algorithm could improve the calculation stability and robustness of neural network. Therefore, the error accumulation of INS/GNSS integration is effectively compensated, and then the positioning accuracy of INS/GNSS intelligence integrated system has been improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小可发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
nsk发布了新的文献求助10
1秒前
1秒前
向阳而生完成签到,获得积分10
1秒前
1秒前
66完成签到,获得积分10
1秒前
1秒前
小蘑菇应助孙木楠采纳,获得10
1秒前
1秒前
2秒前
2秒前
4秒前
爆米花应助Mar采纳,获得10
4秒前
领导范儿应助松子采纳,获得10
4秒前
酷波er应助小畅采纳,获得10
5秒前
SciGPT应助BH采纳,获得10
5秒前
疯狂的寻绿完成签到,获得积分10
5秒前
花花发布了新的文献求助10
5秒前
6秒前
6秒前
shaft发布了新的文献求助20
7秒前
7秒前
www发布了新的文献求助10
7秒前
风清月莹发布了新的文献求助10
8秒前
XBJ完成签到,获得积分10
8秒前
潇洒的奇异果完成签到,获得积分10
9秒前
QQQ123完成签到,获得积分10
9秒前
自觉飞风完成签到 ,获得积分10
9秒前
10秒前
xu发布了新的文献求助10
10秒前
QQQ123发布了新的文献求助10
11秒前
香蕉觅云应助哦吼啦啦啦采纳,获得10
12秒前
13秒前
直率沂发布了新的文献求助10
13秒前
完美世界应助bujiachong采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660641
求助须知:如何正确求助?哪些是违规求助? 4835016
关于积分的说明 15091506
捐赠科研通 4819242
什么是DOI,文献DOI怎么找? 2579181
邀请新用户注册赠送积分活动 1533670
关于科研通互助平台的介绍 1492441