Artificial neural network based on strong track and square root UKF for INS/GNSS intelligence integrated system during GPS outage

全球导航卫星系统应用 计算机科学 人工神经网络 GPS/INS 全球定位系统 卡尔曼滤波器 卫星系统 协方差矩阵 协方差 均方误差 控制理论(社会学) 稳健性(进化) 导航系统 算法 人工智能 辅助全球定位系统 数学 控制(管理) 电信 生物化学 统计 化学 基因
作者
Yi Yang,Xueyao Wang,Nan Zhang,Zhaohui Gao,Yingliang Li
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-64918-4
摘要

Abstract When INS/GNSS (inertial navigation system/global navigation satellite system) integrated system is applied, it will be affected by the insufficient number of visible satellites, and even the satellite signal will be lost completely. At this time, the positioning error of INS accumulates with time, and the navigation accuracy decreases rapidly. Therefore, in order to improve the performance of INS/GNSS integration during the satellite signals interruption, a novel learning algorithm for neural network has been presented and used for intelligence integrated system in this article. First of all, determine the input and output of neural network for intelligent integrated system and a nonlinear model for weighs updating during neural network learning has been established. Then, the neural network learning based on strong tracking and square root UKF (unscented Kalman filter) is proposed for iterations of the nonlinear model. In this algorithm, the square root of the state covariance matrix is used to replace the covariance matrix in the classical UKF to avoid the filter divergence caused by the negative definite state covariance matrix. Meanwhile, the strong tracking coefficient is introduced to adjust the filter gain in real-time and improve the tracking capability to mutation state. Finally, an improved calculation method of strong tracking coefficient is presented to reduce the computational complexity in this algorithm. The results of the simulation test and the field-positioning data show that the proposed learning algorithm could improve the calculation stability and robustness of neural network. Therefore, the error accumulation of INS/GNSS integration is effectively compensated, and then the positioning accuracy of INS/GNSS intelligence integrated system has been improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Micahaeler完成签到 ,获得积分10
1秒前
luoman5656完成签到,获得积分10
1秒前
彳亍1117应助一米八采纳,获得10
1秒前
2秒前
完美世界应助纪亦竹采纳,获得10
2秒前
大模型应助大力的发夹采纳,获得10
5秒前
搜集达人应助hhh采纳,获得10
5秒前
5秒前
aaaaaa发布了新的文献求助10
6秒前
7秒前
sxhlrm发布了新的文献求助10
8秒前
雨柏完成签到 ,获得积分10
10秒前
颜朗完成签到,获得积分10
11秒前
11秒前
Jasper应助ii采纳,获得30
11秒前
wanci应助aaaaaa采纳,获得10
12秒前
迷路的八宝粥完成签到,获得积分10
14秒前
14秒前
li发布了新的文献求助10
17秒前
18秒前
yzw1111111完成签到,获得积分10
20秒前
可靠奇异果完成签到,获得积分10
21秒前
匆匆走过完成签到,获得积分10
24秒前
Sunshine完成签到 ,获得积分10
25秒前
JamesPei应助老叶采纳,获得10
25秒前
FR发布了新的文献求助10
25秒前
25秒前
li完成签到,获得积分10
26秒前
Xee发布了新的文献求助10
29秒前
zitian发布了新的文献求助50
31秒前
32秒前
33秒前
绝对不倒霉的人完成签到 ,获得积分10
36秒前
36秒前
充电宝应助科研通管家采纳,获得10
36秒前
852应助chang采纳,获得10
37秒前
乐乐应助科研通管家采纳,获得10
37秒前
脑洞疼应助科研通管家采纳,获得10
37秒前
小马甲应助科研通管家采纳,获得10
37秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962657
求助须知:如何正确求助?哪些是违规求助? 3508612
关于积分的说明 11142006
捐赠科研通 3241384
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872916
科研通“疑难数据库(出版商)”最低求助积分说明 803517