Artificial neural network based on strong track and square root UKF for INS/GNSS intelligence integrated system during GPS outage

全球导航卫星系统应用 计算机科学 人工神经网络 GPS/INS 全球定位系统 卡尔曼滤波器 卫星系统 协方差矩阵 协方差 均方误差 控制理论(社会学) 稳健性(进化) 导航系统 算法 人工智能 辅助全球定位系统 数学 控制(管理) 电信 生物化学 统计 化学 基因
作者
Yi Yang,Xueyao Wang,Nan Zhang,Zhaohui Gao,Yingliang Li
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-64918-4
摘要

Abstract When INS/GNSS (inertial navigation system/global navigation satellite system) integrated system is applied, it will be affected by the insufficient number of visible satellites, and even the satellite signal will be lost completely. At this time, the positioning error of INS accumulates with time, and the navigation accuracy decreases rapidly. Therefore, in order to improve the performance of INS/GNSS integration during the satellite signals interruption, a novel learning algorithm for neural network has been presented and used for intelligence integrated system in this article. First of all, determine the input and output of neural network for intelligent integrated system and a nonlinear model for weighs updating during neural network learning has been established. Then, the neural network learning based on strong tracking and square root UKF (unscented Kalman filter) is proposed for iterations of the nonlinear model. In this algorithm, the square root of the state covariance matrix is used to replace the covariance matrix in the classical UKF to avoid the filter divergence caused by the negative definite state covariance matrix. Meanwhile, the strong tracking coefficient is introduced to adjust the filter gain in real-time and improve the tracking capability to mutation state. Finally, an improved calculation method of strong tracking coefficient is presented to reduce the computational complexity in this algorithm. The results of the simulation test and the field-positioning data show that the proposed learning algorithm could improve the calculation stability and robustness of neural network. Therefore, the error accumulation of INS/GNSS integration is effectively compensated, and then the positioning accuracy of INS/GNSS intelligence integrated system has been improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助sometime采纳,获得10
刚刚
1秒前
Orange关注了科研通微信公众号
2秒前
Dean应助wanci采纳,获得50
2秒前
认真做科研完成签到,获得积分10
2秒前
Sherline16完成签到,获得积分10
2秒前
2秒前
华仔应助chenjun7080采纳,获得10
2秒前
刘炳浩发布了新的文献求助10
2秒前
1213完成签到,获得积分10
2秒前
分风吹完成签到 ,获得积分10
3秒前
yu发布了新的文献求助10
5秒前
5秒前
5秒前
微笑的语芙完成签到 ,获得积分10
5秒前
十元钱芝麻完成签到,获得积分20
6秒前
6秒前
7秒前
婷婷发布了新的文献求助10
7秒前
桃子味完成签到,获得积分10
7秒前
安琪完成签到,获得积分10
7秒前
metare完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
鸣笛应助张泽芝采纳,获得30
8秒前
SZY完成签到,获得积分10
8秒前
8秒前
CipherSage应助1213采纳,获得10
9秒前
9秒前
10秒前
chen完成签到,获得积分10
10秒前
王一正发布了新的文献求助10
10秒前
共享精神应助英勇碧空采纳,获得10
11秒前
Lucifer发布了新的文献求助10
11秒前
11秒前
XinQihang发布了新的文献求助10
11秒前
11秒前
科研通AI6应助Lynette采纳,获得10
12秒前
lailai发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4560119
求助须知:如何正确求助?哪些是违规求助? 3986390
关于积分的说明 12342454
捐赠科研通 3657013
什么是DOI,文献DOI怎么找? 2014682
邀请新用户注册赠送积分活动 1049457
科研通“疑难数据库(出版商)”最低求助积分说明 937756