Artificial neural network based on strong track and square root UKF for INS/GNSS intelligence integrated system during GPS outage

全球导航卫星系统应用 计算机科学 人工神经网络 GPS/INS 全球定位系统 卡尔曼滤波器 卫星系统 协方差矩阵 协方差 均方误差 控制理论(社会学) 稳健性(进化) 导航系统 算法 人工智能 辅助全球定位系统 数学 控制(管理) 电信 生物化学 统计 化学 基因
作者
Yi Yang,Xueyao Wang,Nan Zhang,Zhaohui Gao,Yingliang Li
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-64918-4
摘要

Abstract When INS/GNSS (inertial navigation system/global navigation satellite system) integrated system is applied, it will be affected by the insufficient number of visible satellites, and even the satellite signal will be lost completely. At this time, the positioning error of INS accumulates with time, and the navigation accuracy decreases rapidly. Therefore, in order to improve the performance of INS/GNSS integration during the satellite signals interruption, a novel learning algorithm for neural network has been presented and used for intelligence integrated system in this article. First of all, determine the input and output of neural network for intelligent integrated system and a nonlinear model for weighs updating during neural network learning has been established. Then, the neural network learning based on strong tracking and square root UKF (unscented Kalman filter) is proposed for iterations of the nonlinear model. In this algorithm, the square root of the state covariance matrix is used to replace the covariance matrix in the classical UKF to avoid the filter divergence caused by the negative definite state covariance matrix. Meanwhile, the strong tracking coefficient is introduced to adjust the filter gain in real-time and improve the tracking capability to mutation state. Finally, an improved calculation method of strong tracking coefficient is presented to reduce the computational complexity in this algorithm. The results of the simulation test and the field-positioning data show that the proposed learning algorithm could improve the calculation stability and robustness of neural network. Therefore, the error accumulation of INS/GNSS integration is effectively compensated, and then the positioning accuracy of INS/GNSS intelligence integrated system has been improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weilucking完成签到,获得积分10
1秒前
1秒前
理躺丁真发布了新的文献求助10
2秒前
2秒前
2秒前
小马甲应助呵tui采纳,获得10
2秒前
一路狂奔等不了完成签到 ,获得积分10
2秒前
miao发布了新的文献求助10
2秒前
自由的新波完成签到,获得积分10
2秒前
ceeray23应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
大模型应助ttssooe采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
啦啦啦123完成签到,获得积分10
2秒前
2秒前
蓝天应助科研通管家采纳,获得10
2秒前
nuoran完成签到,获得积分10
2秒前
苏silence发布了新的文献求助10
3秒前
3秒前
YY发布了新的文献求助10
4秒前
4秒前
隐形fh完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助无情的沛白采纳,获得10
4秒前
4秒前
4秒前
专注钢笔发布了新的文献求助10
4秒前
姚盈盈发布了新的文献求助10
5秒前
lion完成签到,获得积分10
5秒前
5秒前
5秒前
mama完成签到,获得积分10
6秒前
King关注了科研通微信公众号
6秒前
ddingk完成签到,获得积分10
6秒前
炙热远航完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
Stella应助qiuxiali123采纳,获得10
7秒前
JamesPei应助qiuxiali123采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017