转录组
代谢组
类黄酮生物合成
氨基酸
生物化学
代谢组学
类黄酮
生物合成
生物
多酚
新陈代谢
MYB公司
WRKY蛋白质结构域
化学
转录因子
基因
基因表达
代谢物
生物信息学
抗氧化剂
作者
Chenxi Gao,Zhihui Wang,Weiwei Wu,Zhe Zhou,Xuming Deng,Zhidan Chen,Weijiang Sun
出处
期刊:Tree Physiology
[Oxford University Press]
日期:2024-06-07
卷期号:44 (7)
标识
DOI:10.1093/treephys/tpae065
摘要
Abstract Flavonoids (especially anthocyanins and catechins) and amino acids represent a high abundance of health-promoting metabolites. Although we observed abscisic acid accumulation in purple leaves and low levels in albino tea leaves, the specific mechanism behind its impact on flavor compounds remains unclear. In this study, we treated tea leaves with exogenous abscisic acid and abscisic acid biosynthesis inhibitors (Flu), measured physiological indicators and conducted comprehensive transcriptomic and metabolomic analyses to elucidate the potential mechanisms underlying color change. Our results demonstrate that abscisic acid treatment induces purple coloration, while Flu treatment causes discoloration in tea leaves. Metabolomic analysis revealed higher levels of four anthocyanins and six catechins in the group treated with abscisic acid in comparison with the control group. Additionally, there was a notable increase in 15 amino acids in the Flu-treated group. Notably, the levels of flavonoids and amino acids showed an inverse relationship between the two treatments. Transcriptomic comparison between the treatments and the control group revealed upregulation of differentially expressed genes encoding dihydroflavonol reductase and uridine diphosphate-glycose flavonoid glycosyltransferase in the abscisic acid-treated group, leading to the accumulation of identified anthocyanins and catechins. In contrast, differentially expressed genes encoding nitrate reductase and nitrate transporter exhibited elevated expression in the group treated with Flu, consequently facilitating the accumulation of amino acids, specifically L-theanine and L-glutamine. Furthermore, our co-expression network analysis suggests that MYB and bHLH transcription factors may play crucial roles in regulating the expression of differentially expressed genes involved in the biosynthesis of flavonoids and amino acids. This study provides insights for targeted genetic engineering to enhance the nutritional and market value of tea, together with the potential application of purple and albino tea leaves as functional beverages. It also offers guidance for future breeding programs and production.
科研通智能强力驱动
Strongly Powered by AbleSci AI