Artificial intelligence automatic measurement technology of lumbosacral radiographic parameters

射线照相术 人工智能 腰骶关节 计算机科学 医学 生物医学工程 放射科 解剖
作者
Shuofeng Yuan,Ruiyuan Chen,Xingyu Liu,Tianyi Wang,Aobo Wang,Ning Fan,Peng Du,Xi Yu,Zhaoquan Gu,Yiling Zhang,Lei Zang
出处
期刊:Frontiers in Bioengineering and Biotechnology [Frontiers Media SA]
卷期号:12
标识
DOI:10.3389/fbioe.2024.1404058
摘要

Background Currently, manual measurement of lumbosacral radiological parameters is time-consuming and laborious, and inevitably produces considerable variability. This study aimed to develop and evaluate a deep learning-based model for automatically measuring lumbosacral radiographic parameters on lateral lumbar radiographs. Methods We retrospectively collected 1,240 lateral lumbar radiographs to train the model. The included images were randomly divided into training, validation, and test sets in a ratio of approximately 8:1:1 for model training, fine-tuning, and performance evaluation, respectively. The parameters measured in this study were lumbar lordosis (LL), sacral horizontal angle (SHA), intervertebral space angle (ISA) at L4–L5 and L5–S1 segments, and the percentage of lumbar spondylolisthesis (PLS) at L4–L5 and L5–S1 segments. The model identified key points using image segmentation results and calculated measurements. The average results of key points annotated by the three spine surgeons were used as the reference standard. The model’s performance was evaluated using the percentage of correct key points (PCK), intra-class correlation coefficient (ICC), Pearson correlation coefficient (r), mean absolute error (MAE), root mean square error (RMSE), and box plots. Results The model’s mean differences from the reference standard for LL, SHA, ISA (L4–L5), ISA (L5–S1), PLS (L4–L5), and PLS (L5–S1) were 1.69°, 1.36°, 1.55°, 1.90°, 1.60%, and 2.43%, respectively. When compared with the reference standard, the measurements of the model had better correlation and consistency (LL, SHA, and ISA: ICC = 0.91–0.97, r = 0.91–0.96, MAE = 1.89–2.47, RMSE = 2.32–3.12; PLS: ICC = 0.90–0.92, r = 0.90–0.91, MAE = 1.95–2.93, RMSE = 2.52–3.70), and the differences between them were not statistically significant ( p > 0.05). Conclusion The model developed in this study could correctly identify key vertebral points on lateral lumbar radiographs and automatically calculate lumbosacral radiographic parameters. The measurement results of the model had good consistency and reliability compared to manual measurements. With additional training and optimization, this technology holds promise for future measurements in clinical practice and analysis of large datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助朕是大皇帝采纳,获得10
2秒前
科研小白发布了新的文献求助10
5秒前
7秒前
8秒前
酷波er应助van_采纳,获得10
9秒前
yuni123完成签到,获得积分10
9秒前
11秒前
luobo发布了新的文献求助10
11秒前
852应助心灵美绯采纳,获得10
12秒前
qianyu完成签到,获得积分10
12秒前
13秒前
爆米花应助VI采纳,获得10
13秒前
13秒前
正直夜安发布了新的文献求助10
14秒前
海阔天空完成签到,获得积分10
14秒前
诚心的金毛完成签到,获得积分10
15秒前
16秒前
马界泡泡发布了新的文献求助10
17秒前
19秒前
19秒前
俞渝完成签到,获得积分20
20秒前
20秒前
科研通AI2S应助菠萝采纳,获得10
22秒前
23秒前
小周不吃粥完成签到 ,获得积分10
24秒前
科研通AI2S应助wangzhao采纳,获得10
24秒前
钦川发布了新的文献求助10
24秒前
24秒前
zengyl完成签到,获得积分10
25秒前
脑洞疼应助喜东东采纳,获得30
26秒前
耶耶完成签到 ,获得积分20
26秒前
27秒前
29秒前
山山而川发布了新的文献求助20
29秒前
29秒前
30秒前
JACN完成签到,获得积分10
31秒前
钦川完成签到,获得积分10
31秒前
李爱国应助清酒采纳,获得10
32秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140918
求助须知:如何正确求助?哪些是违规求助? 2791878
关于积分的说明 7800737
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302404
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601226