Artificial intelligence automatic measurement technology of lumbosacral radiographic parameters

射线照相术 人工智能 腰骶关节 计算机科学 医学 生物医学工程 放射科 解剖
作者
Shuofeng Yuan,Ruiyuan Chen,Xingyu Liu,Tianyi Wang,Aobo Wang,Ning Fan,Peng Du,Xi Yu,Zhaoquan Gu,Yiling Zhang,Lei Zang
出处
期刊:Frontiers in Bioengineering and Biotechnology [Frontiers Media SA]
卷期号:12
标识
DOI:10.3389/fbioe.2024.1404058
摘要

Background Currently, manual measurement of lumbosacral radiological parameters is time-consuming and laborious, and inevitably produces considerable variability. This study aimed to develop and evaluate a deep learning-based model for automatically measuring lumbosacral radiographic parameters on lateral lumbar radiographs. Methods We retrospectively collected 1,240 lateral lumbar radiographs to train the model. The included images were randomly divided into training, validation, and test sets in a ratio of approximately 8:1:1 for model training, fine-tuning, and performance evaluation, respectively. The parameters measured in this study were lumbar lordosis (LL), sacral horizontal angle (SHA), intervertebral space angle (ISA) at L4–L5 and L5–S1 segments, and the percentage of lumbar spondylolisthesis (PLS) at L4–L5 and L5–S1 segments. The model identified key points using image segmentation results and calculated measurements. The average results of key points annotated by the three spine surgeons were used as the reference standard. The model’s performance was evaluated using the percentage of correct key points (PCK), intra-class correlation coefficient (ICC), Pearson correlation coefficient (r), mean absolute error (MAE), root mean square error (RMSE), and box plots. Results The model’s mean differences from the reference standard for LL, SHA, ISA (L4–L5), ISA (L5–S1), PLS (L4–L5), and PLS (L5–S1) were 1.69°, 1.36°, 1.55°, 1.90°, 1.60%, and 2.43%, respectively. When compared with the reference standard, the measurements of the model had better correlation and consistency (LL, SHA, and ISA: ICC = 0.91–0.97, r = 0.91–0.96, MAE = 1.89–2.47, RMSE = 2.32–3.12; PLS: ICC = 0.90–0.92, r = 0.90–0.91, MAE = 1.95–2.93, RMSE = 2.52–3.70), and the differences between them were not statistically significant ( p > 0.05). Conclusion The model developed in this study could correctly identify key vertebral points on lateral lumbar radiographs and automatically calculate lumbosacral radiographic parameters. The measurement results of the model had good consistency and reliability compared to manual measurements. With additional training and optimization, this technology holds promise for future measurements in clinical practice and analysis of large datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
简单双双发布了新的文献求助20
2秒前
田田田完成签到,获得积分10
2秒前
我要读博士完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
徐家培完成签到,获得积分10
4秒前
娇气的代双完成签到,获得积分10
4秒前
5秒前
Maggie完成签到,获得积分10
6秒前
7秒前
7秒前
共享精神应助Hu采纳,获得10
8秒前
柯南嘉尔发布了新的文献求助10
8秒前
9秒前
平常天宇发布了新的文献求助30
9秒前
小森发布了新的文献求助10
9秒前
孙志英发布了新的文献求助10
9秒前
10秒前
10秒前
Sylvia完成签到 ,获得积分10
11秒前
HOAN应助顺利白竹采纳,获得30
11秒前
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
luermei发布了新的文献求助10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
深呼吸发布了新的文献求助10
15秒前
Owen应助王老裂采纳,获得10
15秒前
孤独的根号3完成签到,获得积分10
16秒前
屋巫奈奈完成签到,获得积分10
16秒前
16秒前
英姑应助小森采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728665
求助须知:如何正确求助?哪些是违规求助? 5314143
关于积分的说明 15314925
捐赠科研通 4875842
什么是DOI,文献DOI怎么找? 2618989
邀请新用户注册赠送积分活动 1568649
关于科研通互助平台的介绍 1525191