Artificial intelligence automatic measurement technology of lumbosacral radiographic parameters

射线照相术 人工智能 腰骶关节 计算机科学 医学 生物医学工程 放射科 解剖
作者
Shuofeng Yuan,Ruiyuan Chen,Xingyu Liu,Tianyi Wang,Aobo Wang,Ning Fan,Peng Du,Xi Yu,Zhaoquan Gu,Yiling Zhang,Lei Zang
出处
期刊:Frontiers in Bioengineering and Biotechnology [Frontiers Media]
卷期号:12
标识
DOI:10.3389/fbioe.2024.1404058
摘要

Background Currently, manual measurement of lumbosacral radiological parameters is time-consuming and laborious, and inevitably produces considerable variability. This study aimed to develop and evaluate a deep learning-based model for automatically measuring lumbosacral radiographic parameters on lateral lumbar radiographs. Methods We retrospectively collected 1,240 lateral lumbar radiographs to train the model. The included images were randomly divided into training, validation, and test sets in a ratio of approximately 8:1:1 for model training, fine-tuning, and performance evaluation, respectively. The parameters measured in this study were lumbar lordosis (LL), sacral horizontal angle (SHA), intervertebral space angle (ISA) at L4–L5 and L5–S1 segments, and the percentage of lumbar spondylolisthesis (PLS) at L4–L5 and L5–S1 segments. The model identified key points using image segmentation results and calculated measurements. The average results of key points annotated by the three spine surgeons were used as the reference standard. The model’s performance was evaluated using the percentage of correct key points (PCK), intra-class correlation coefficient (ICC), Pearson correlation coefficient (r), mean absolute error (MAE), root mean square error (RMSE), and box plots. Results The model’s mean differences from the reference standard for LL, SHA, ISA (L4–L5), ISA (L5–S1), PLS (L4–L5), and PLS (L5–S1) were 1.69°, 1.36°, 1.55°, 1.90°, 1.60%, and 2.43%, respectively. When compared with the reference standard, the measurements of the model had better correlation and consistency (LL, SHA, and ISA: ICC = 0.91–0.97, r = 0.91–0.96, MAE = 1.89–2.47, RMSE = 2.32–3.12; PLS: ICC = 0.90–0.92, r = 0.90–0.91, MAE = 1.95–2.93, RMSE = 2.52–3.70), and the differences between them were not statistically significant ( p > 0.05). Conclusion The model developed in this study could correctly identify key vertebral points on lateral lumbar radiographs and automatically calculate lumbosacral radiographic parameters. The measurement results of the model had good consistency and reliability compared to manual measurements. With additional training and optimization, this technology holds promise for future measurements in clinical practice and analysis of large datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助王雯雯采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
云朵发布了新的文献求助10
3秒前
小慕斯发布了新的文献求助10
3秒前
在水一方应助sunsaint采纳,获得10
4秒前
4秒前
5秒前
yyyhhh发布了新的文献求助10
5秒前
6秒前
111完成签到,获得积分20
6秒前
7秒前
殷启维发布了新的文献求助10
7秒前
李怼怼完成签到,获得积分10
7秒前
jjj应助小慕斯采纳,获得10
8秒前
郜郜嗳发布了新的文献求助30
8秒前
酷波er应助小慕斯采纳,获得10
8秒前
善学以致用应助小慕斯采纳,获得10
8秒前
Ava应助小慕斯采纳,获得10
8秒前
赫幼蓉发布了新的文献求助10
9秒前
ssslls发布了新的文献求助10
9秒前
细心秀发发布了新的文献求助10
9秒前
Lucas应助乐观的一一采纳,获得10
9秒前
爱笑的凡之完成签到,获得积分20
9秒前
乐乐应助云朵采纳,获得10
9秒前
儒雅的函完成签到,获得积分10
10秒前
狗焕完成签到,获得积分10
10秒前
3080发布了新的文献求助20
10秒前
香蕉觅云应助萧七七采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
yang发布了新的文献求助10
12秒前
乐乐应助鉨汏闫采纳,获得10
14秒前
无私的芹应助科研通管家采纳,获得10
15秒前
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
yerong应助科研通管家采纳,获得30
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958929
求助须知:如何正确求助?哪些是违规求助? 3505199
关于积分的说明 11122925
捐赠科研通 3236708
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871444
科研通“疑难数据库(出版商)”最低求助积分说明 802794