Career factors related to winning Olympic medals in swimming

奖章 逻辑回归 人口学 国籍 可能性 逐步回归 统计 线性回归 心理学 数学 地理 社会学 移民 考古
作者
Aslan Tchamkerten,Paul Chaudron,Nicolas Girard,Antoine Monnier,David B. Pyne,Philippe Hellard
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (6): e0304444-e0304444
标识
DOI:10.1371/journal.pone.0304444
摘要

To investigate associations between a swimmer's career progression and winning a medal at the Olympic Games (OG) or World Championships (WC). A total of 4631 swimming performances of 1535 top swimmers (653 women, 882 men) from 105 nationalities since1973 were extracted from FINA rankings. A panel of 12 predictor variables including nationality, gender, competition, age, number and timing of competitions, pattern of progressions and regressions in performance, and medal outcomes was established. Linear logistic regression was used to study the association between winning a medal and predictor variables. Logistic regression coefficients were obtained by training on 80% of the database, and prediction accuracy evaluated on the remaining 20%. Using the training set, a selection of 9 most relevant features for prediction of winning a medal (target variable) was obtained through exhaustive feature selection and cross-validation: nationality, competition, number of competitions, number of annual career progressions (nb_prog), maximum annual career progression (max-progr), number of annual career regressions (nb_reg), age at maximum annual progression, P6 (the level of performance six months before the World Championships or Olympic Games), and P2 (the level of performance two months before the World Championships or Olympic Games). A logistic regression model was built and retrained on the entire training set achieved an area under the ROC curve of ~90% on the test set. The odds of winning a medal increased by 1.64 (95% CI, 1.39-1.91) and 1.44 (1.22-1.72) for each unit of increase in max-progr and n-prog, respectively. Odds of winning a medal decreased by 0.60 (0.49-0.72) for a unit increase in n-reg. In contrast, the odds increased by 1.70 (1.39-2.07) and 4.35 (3.48-5.42) for improvements in the 6 and 2 months before competition (P<0.001, for all variables). The likelihood of a swimmer winning an international medal is improved by ~40-90% with progressions from season-to-season, and reducing the number of regressions in performance. The chances of success are also improved 2- to 4-fold by substantial improvements in performance in the months before competition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪的YOSH完成签到,获得积分10
刚刚
无花果应助路之遥兮采纳,获得10
刚刚
1秒前
1秒前
1秒前
杨breaking发布了新的文献求助10
1秒前
海盗船长完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
hyishu完成签到,获得积分10
2秒前
jq完成签到,获得积分10
3秒前
桑尼号完成签到,获得积分10
3秒前
敏感的手机完成签到 ,获得积分10
3秒前
黄花完成签到 ,获得积分10
3秒前
xxs完成签到,获得积分10
3秒前
3秒前
耍酷的卿应助小许采纳,获得10
4秒前
英俊芷完成签到,获得积分10
4秒前
minsu完成签到,获得积分10
4秒前
惊鸿客完成签到,获得积分10
4秒前
ri_290完成签到,获得积分10
4秒前
幽默的煎饼完成签到,获得积分10
5秒前
新帅完成签到,获得积分10
6秒前
贪玩钢铁侠完成签到,获得积分10
6秒前
ASUKA完成签到,获得积分10
6秒前
6秒前
sqz_df发布了新的文献求助10
6秒前
朵拉完成签到,获得积分10
7秒前
MCRing完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
李爱国应助唐唐采纳,获得10
10秒前
10秒前
哈哈完成签到,获得积分10
11秒前
香蕉南风发布了新的文献求助10
11秒前
可靠的白竹完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
苹果芷雪发布了新的文献求助10
14秒前
博ge发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765527
求助须知:如何正确求助?哪些是违规求助? 5561576
关于积分的说明 15409288
捐赠科研通 4900231
什么是DOI,文献DOI怎么找? 2636244
邀请新用户注册赠送积分活动 1584487
关于科研通互助平台的介绍 1539736