A novel structure adaptive grey seasonal model with data reorganization and its application in solar photovoltaic power generation prediction

光伏系统 功率(物理) 计算机科学 环境科学 工程类 电气工程 物理 量子力学
作者
Yong Wang,Xinbo He,Ying Zhou,Yongxian Luo,Yanbing Tang,Govindasami Narayanan
出处
期刊:Energy [Elsevier]
卷期号:302: 131833-131833
标识
DOI:10.1016/j.energy.2024.131833
摘要

The increasing expansion of photovoltaic power generation leads to unpredictable fluctuations in electricity supply, which can potentially jeopardize the stability of the power grid and escalate the costs associated with grid imbalances. As a result, precise forecasts of photovoltaic power generation play a vital role in optimizing capacity deployment, enhancing consumption levels, improving planning strategies, and maintaining grid balance within systems characterized by significant penetration of solar energy. This paper proposes a structural adaptive grey seasonal model based on data reorganization. Solar photovoltaic power generation data typically exhibit seasonal fluctuations, which pose a challenge to existing prediction techniques. Therefore, this paper adopts the idea of data reorganization to eliminate the seasonal fluctuations of observations, and the adaptive accumulation operator can accurately simulate the change trend of the original data in different periods, overcoming the defect of insufficient adaptability of the traditional accumulation operator. Subsequently, the time trend items are incorporated into the model structure to identify the trend characteristics of system development, which can effectively explain the power generation trend of photovoltaic systems at different time periods and improve the prediction accuracy of the model. In addition, the compatibility and unbiased nature of the proposed model have been demonstrated to help us better perceive the model. The Grey Wolf Optimizer (GWO) is used to optimize the adaptive parameters of the model, endowing it with higher flexibility and stronger adaptability. In order to verify the effectiveness of the model, three practical cases (namely quarterly solar power generation in the United States, Japan, and Germany) were compared with existing econometric techniques, artificial neural networks, and grey prediction methods. The experimental results show that the new model outperforms other benchmark models in both simulation and prediction performance, and enjoys high robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
英姑应助桂魄采纳,获得10
刚刚
刚刚
流北爷发布了新的文献求助10
1秒前
开心完成签到,获得积分10
1秒前
gguc发布了新的文献求助10
2秒前
万能图书馆应助okghy采纳,获得10
2秒前
2秒前
怕黑道消完成签到 ,获得积分10
2秒前
王小布完成签到,获得积分10
3秒前
石头发布了新的文献求助10
3秒前
楼下小白龙完成签到,获得积分10
3秒前
润润轩轩发布了新的文献求助10
3秒前
3秒前
Echo完成签到,获得积分10
4秒前
zmmmm发布了新的文献求助10
5秒前
雪山飞龙发布了新的文献求助30
5秒前
5秒前
Jenny应助小土豆采纳,获得50
5秒前
情怀应助布鲁鲁采纳,获得10
5秒前
5秒前
悦耳寒松发布了新的文献求助10
6秒前
6秒前
霍嘉文完成签到,获得积分10
6秒前
7秒前
bluesiryao发布了新的文献求助10
7秒前
李爱国应助23采纳,获得10
8秒前
8秒前
SHJ发布了新的文献求助10
8秒前
开心的幻柏完成签到 ,获得积分10
8秒前
大神完成签到 ,获得积分20
8秒前
8秒前
9秒前
9秒前
闪闪的YOSH完成签到,获得积分10
9秒前
Jimmy完成签到,获得积分10
9秒前
仁爱书白完成签到,获得积分10
10秒前
10秒前
孤独的珩发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794