A novel structure adaptive grey seasonal model with data reorganization and its application in solar photovoltaic power generation prediction

光伏系统 功率(物理) 计算机科学 环境科学 工程类 电气工程 物理 量子力学
作者
Yong Wang,Xinbo He,Ying Zhou,Yongxian Luo,Yanbing Tang,Govindasami Narayanan
出处
期刊:Energy [Elsevier BV]
卷期号:302: 131833-131833
标识
DOI:10.1016/j.energy.2024.131833
摘要

The increasing expansion of photovoltaic power generation leads to unpredictable fluctuations in electricity supply, which can potentially jeopardize the stability of the power grid and escalate the costs associated with grid imbalances. As a result, precise forecasts of photovoltaic power generation play a vital role in optimizing capacity deployment, enhancing consumption levels, improving planning strategies, and maintaining grid balance within systems characterized by significant penetration of solar energy. This paper proposes a structural adaptive grey seasonal model based on data reorganization. Solar photovoltaic power generation data typically exhibit seasonal fluctuations, which pose a challenge to existing prediction techniques. Therefore, this paper adopts the idea of data reorganization to eliminate the seasonal fluctuations of observations, and the adaptive accumulation operator can accurately simulate the change trend of the original data in different periods, overcoming the defect of insufficient adaptability of the traditional accumulation operator. Subsequently, the time trend items are incorporated into the model structure to identify the trend characteristics of system development, which can effectively explain the power generation trend of photovoltaic systems at different time periods and improve the prediction accuracy of the model. In addition, the compatibility and unbiased nature of the proposed model have been demonstrated to help us better perceive the model. The Grey Wolf Optimizer (GWO) is used to optimize the adaptive parameters of the model, endowing it with higher flexibility and stronger adaptability. In order to verify the effectiveness of the model, three practical cases (namely quarterly solar power generation in the United States, Japan, and Germany) were compared with existing econometric techniques, artificial neural networks, and grey prediction methods. The experimental results show that the new model outperforms other benchmark models in both simulation and prediction performance, and enjoys high robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guoguo完成签到,获得积分10
1秒前
1秒前
Orange应助记忆采纳,获得10
2秒前
2秒前
2秒前
耳东陈完成签到 ,获得积分10
3秒前
3秒前
Orange应助小朋友采纳,获得10
3秒前
zx发布了新的文献求助10
4秒前
4秒前
4秒前
petrichor完成签到 ,获得积分10
4秒前
sjz发布了新的文献求助10
6秒前
7秒前
daqing1725完成签到,获得积分10
7秒前
ky幻影完成签到,获得积分10
8秒前
Derek完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
Hbjja完成签到,获得积分10
8秒前
8秒前
天Q发布了新的文献求助30
9秒前
10秒前
FashionBoy应助十一采纳,获得10
11秒前
apple发布了新的文献求助10
11秒前
zx完成签到,获得积分10
12秒前
12秒前
13秒前
妩媚的夜柳完成签到 ,获得积分10
14秒前
15秒前
16秒前
岑岑岑完成签到,获得积分10
17秒前
科目三应助动人的cc采纳,获得10
17秒前
17秒前
daqing1725发布了新的文献求助200
17秒前
顾矜应助apple采纳,获得10
19秒前
激动的金鑫完成签到,获得积分10
19秒前
20秒前
20秒前
丽丽发布了新的文献求助10
20秒前
苽峰发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011950
求助须知:如何正确求助?哪些是违规求助? 4253264
关于积分的说明 13253336
捐赠科研通 4055969
什么是DOI,文献DOI怎么找? 2218515
邀请新用户注册赠送积分活动 1228110
关于科研通互助平台的介绍 1150405